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Preface

The motivation and background for the two-volume book on Quantum Plasma-
dynamics (QPD) were explained in the Preface to volume 1 [1]. In brief, my
objective in QPD is to synthesize quantum electrodynamics (QED) and the kinetic
theory of plasmas. My interest in doing this has extended over more than four
decades, as an ongoing but secondary research topic. I have used the development
of QPD as a training tool for some of my students in theoretical physics. As a
result, my collaborators have mostly been research students, who have written
theses either partially or completely on problems in this field (including Wilson
Sy and Ray Stoneham in the 1970s, Andrew Parle, Leith Hayes, Peter Robinson
and Michelle Storey (née Allen) in the 1980s, Whayne Padden, Qinghuan Luo,
Stephen Hardy and Malcolm Kennett in the 1990s, and Jock McOrist, Alex Judge
and Matthew Verdon in the 2000s). Occasional international visitors (John Kirk,
Jan Kuijpers, V.V. Zheleznyakov) were collaborators briefly in earlier years. Longer
term collaborations have been with Jeanette Weise, since 1995, and with Mushtaq
Ahmed for 2 years (2009–2010).

Volume 2 is essentially an extension of the theory in volume 1 from unmagne-
tized plasmas to magnetized plasma. Both volumes consist of two parts, with the
first part concerned with a covariant reformulation of nonquantum plasma kinetic
theory, and the second part concerned with the use of QED to calculate plasma
processes and plasma responses. The writing of volume 2 has taken me longer than
originally anticipated: most of the material in Chaps. 1–8 already existed in some
form 4 years ago, when volume 1 was completed. A major part of the delay has
been due to my desire to derive a completely general form for the response of a
relativistic quantum electron gas for the magnetized case. The aim was to generalize
the results in Chap. 9 of volume 1 to the magnetized case, resulting in Chap. 9 of this
volume. These new results have been applied to only a few special cases, and there is
much more to be explored relating to dispersion in relativistic quantum magnetized
plasmas. I had originally intended to include a tenth chapter, analogous to Chap. 10
of volume 1, extending the theory to a magnetized neutrino plasma, based on [2],
and to a magnetized boson plasma, based on [3,4], but decided to omit this material.

v



vi Preface

One specific problem that delayed the completion of this volume concerns
the relation between QPD and quantum fluid theory (QFT), on which there has
been a rapidly expanding literature over the past decade or so. I have included a
short section (� 1.5) on QFT in this volume. The problem concerns spin-dependent
plasmas: I have been unable to identify how the correct relativistic quantum
(QPD) result reproduces the quasi-classical QFT result (� 9.6). There remains a
need to justify (or otherwise) extensions of QFT to include spin in a magnetized
electron gas.

Sydney, Australia Don Melrose
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Chapter 1
Covariant Fluid Models for Magnetized Plasmas

Three applications of covariant fluid theory are discussed in this chapter: a covariant
form of cold-plasma theory, covariant MHD theory, and a covariant form of quantum
fluid theory.

In a cold plasma model each species in the plasma is described as a fluid.
The fluid equations are used to calculate the response of each species, with the
response of the plasma obtained by summing over the contributions of all species.
Magnetohydrodynamics (MHD) is the conventional fluid description of a plasma. It
differs from a cold plasma model in that the plasma is treated as a single fluid, rather
than separate fluids for each species, and through the inclusion of a pressure. In
quantum fluid theory, additional quantum effects are included in the fluid equation:
quantum mechanical diffusion (the Bohm term), degeneracy and spin.

A covariant form of the fluid equations for a magnetized cold plasma requires a
covariant description of a magnetostatic field. The Maxwell 4-tensor,F�� , is used to
construct basis 4-vectors in � 1.1. The covariant description of the orbit of a particle
is identified, and used in � 1.2 to find the response of a cold plasma using both the
forward-scattering and the fluid methods. The cold plasma model is generalized to
include the effect of motions along the field lines in � 1.3. A covariant form of MHD
theory for a relativistic plasma is introduced in � 1.4 and used to derive the properties
of the MHD modes. Quantum fluid theory is discussed in � 1.5. SI units are used in
introducing the theory, before reverting to natural units for the formal development
of the theory. Except where indicated otherwise, formulae are in natural units.

1.1 Covariant Description of a Magnetostatic Field

A static electromagnetic field is said to be a magnetostatic field if there exists an
inertial frame in which there is a magnetic field but no electric field. In this section,
the Maxwell 4-tensor is written down for an arbitrary static electromagnetic field,
and then specialized to a magnetostatic field. The Maxwell tensor is used to separate
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2 1 Covariant Fluid Models for Magnetized Plasmas

space-time into two 2-dimensional subspaces, one containing the time-axis and the
direction of the magnetic field, and the other perpendicular to the magnetic field.

1.1.1 Maxwell 4-Tensor

The Maxwell tensor for any electromagnetic field, corresponding to an electric field,
E and a magnetic field, B, has components (SI units)

F��.x/ D

0
BB@

0 �E1.x/=c �E2.x/=c �E3.x/=c

E1.x/=c 0 �B3.x/ B2.x/

E2.x/=c B3.x/ 0 �B1.x/

E3.x/=c �B2.x/ B1.x/ 0

1
CCA ; (1.1.1)

where argument x denotes the components of the 4-vector x� D Œct;x�. As in
volume 1, the 4-tensor indices, �; � run over 0; 1; 2; 3, and the metric tensor, g�� ,
is diagonal, .C1;�1;�1;�1/, such that one has x� D Œct;�x�. Thus, in cartesian
coordinates, the contravariant components with � D 0; 1; 2; 3 are x0 D ct , x1 D x,
x2 D y, x3 D z, and the covariant components are x0 D ct , x1 D �x, x2 D �y,
x3 D �z. The contravariant componentsEi.x/, Bi.x/, with i D 1; 2; 3 correspond
to the respective cartesian components of the corresponding 3-vectors.

The dual of the Maxwell tensor is defined by

F��.x/ D 1

2
���˛ˇF˛ˇ.x/; (1.1.2)

with ���˛ˇ the completely antisymmetric tensor with �0123 D C1. The dual has
components (SI units)

F��.x/ D

0
BB@

0 �B1.x/ �B2.x/ �B3.x/

B1.x/ 0 E3.x/=c �E2.x/=c

B2.x/ �E3.x/=c 0 E1.x/=c

B3.x/ E2.x/=c �E1.x/=c 0

1
CCA : (1.1.3)

Maxwell’s equations in covariant form are

@�F
��.x/ D �0J

�.x/; @�F��.x/ D 0; (1.1.4)

with @� D @=@x�.



1.1 Covariant Description of a Magnetostatic Field 3

Classification of Static Fields

An arbitrary static homogeneous electromagnetic field may be classified as
a magnetostatic field, an electrostatic field, or an electromagnetic wrench.
This classification is based on the fact that there are two independent
electromagnetic invariants (SI units)

S D � 1
4
F �� F�� D 1

2

�
E 2=c2 � B2

�
; P D � 1

4
F �� F�� D E � B=c; (1.1.5)

where the argument x is omitted. An arbitrary static electromagnetic field is (a) a
magnetostatic field for S < 0, P D 0, (b) an electrostatic field for S > 0, P D 0,
or (c) an electromagnetic wrench for P ¤ 0. This classification follows from the
fact that in these three cases, one can always choose an inertial frame such that (a)
there is no electric field and the magnetic field is along a chosen axis, (b) there is no
magnetic field and the electric field is along a chosen axis, and (c) the electric and
magnetic fields are parallel and along a chosen axis.

Magnetostatic Field

It is convenient to denote the magnetostatic field by F��
0 , and to write

F
��
0 D Bf ��; B D �

1
2
F
��
0 F0��

�1=2
: (1.1.6)

Equation (1.1.6) defines the invariant B , interpreted as the magnetic field strength,
and introduces a dimensionless 4-tensor f �� . A second dimensionless 4-tensor is
the dual of f �� :

	�� D 1
2
���˛ˇf˛ˇ; F�� D B 	��: (1.1.7)

The tensors f �� and 	�� are both antisymmetric and they are orthogonal to each
other:

f �� D �f ��; 	�� D �	��; f �˛	˛
� D 0: (1.1.8)

Alternative Form for the Maxwell 4-Tensor

The most general form for a static electromagnetic field is an electromagnetic
wrench. Such a field may be written in the form (SI units)

F �� D Bf �� C .E=c/	��; E=c; B D �
.S2 C P2/1=2 ˙ S

�1=2
: (1.1.9)

The tensors f �� , 	�� have the forms (1.1.16) in the frame in which the electric and
magnetic fields are parallel and along the 3 axis. For E D 0 (1.1.9) describes a
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magnetostatic field along the 3 axis, and forB D 0 (1.1.9) describes an electrostatic
field along the 3 axis.

4-Tensor B�

The description of the magnetostatic field in terms of F��
0 applies in any frame.

There is an alternative description of a magnetostatic field in terms of a 4-vector,
B�, that is available if there is some preferred frame. In the presence of a medium
there is a preferred frame: the rest frame of the medium. Let Qu� be the 4-velocity
of the rest frame, with Qu2 D Qu� Qu� D 1. One has Qu D Œ1; 0� in the rest frame. The
4-tensor is

B� D F��
0 Qu� D B b�: (1.1.10)

One has B�B� D �B2 and hence b�b� D �1. In the rest frame one may write
b� D Œ0;b�, where b is a unit vector along the direction of the magnetic field.

1.1.2 Projection Tensors g
��

? and g
��

k

The tensors f �� and 	�� allow one to construct projection tensors g��? and g��k :

g
��

? D �f �
˛f

˛�; g
��

k D 	�˛	
˛�: (1.1.11)

The tensors g��? and g��k span the 2-dimensional perpendicular and time-parallel
subspaces, respectively. They correspond to a separation of the metric tensor into
metric tensors for these two subspaces:

g�� D g
��

k C g
��

? : (1.1.12)

In a frame in which the magnetostatic field is along the 3-axis, g��k is diagonal

.1; 0; 0;�1/ and g��? is diagonal .0;�1;�1; 0/.
An alternative definition of g

��

k assumes the existence of a frame in
which (1.1.10) applies. This frame is described by its 4-velocity Qu�, and by the
4-vector b� along the direction of the magnetic field. One has

g
��

k D Qu� Qu� � b�b�: (1.1.13)

Despite appearances, g��k is independent of Qu, that is, it is not dependent on the
choice of a preferred frame.
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Parallel and Perpendicular Invariant Components

The projection tensors allow one to separate any 4-vector, a� say, into a sum of two
orthogonal 4-vectors, a� D a

�

? C a
�

k ;

a
�

? D g
��

? a�; a
�

k D g
��

k a�: (1.1.14)

Similarly, for a single 4-vector, a�, the invariant a2 is written in the form a2 D
.a2/? C .a2/k, and for two 4-vectors, a� and b�, the invariant ab is written in the
form ab D .ab/? C .ab/k. These separations are made by writing

.a2/? D g
��

? a�a�; .ab/? D g
��

? a�b�;

.a2/k D g
��

k a�a�; .ab/k D g
��

k a�b�: (1.1.15)

The components of the wave 4-vector, k� D Œ!=c;k�, with k D .kx; ky; kz/, give
.k2/? D �k2? D �.k2x C k2y/, .k

2/k D !2=c2 � k2z .

Components for B Along the 3-Axis

In any frame in which F��
0 corresponds to E D 0, one is free to write B D Bb,

and to orient the axies such that b D .0; 0; 1/ is along the 3-axis. The tensors f ��

and 	�� then have components

f �� D

0
BB@

0 0 0 0

0 0 �1 0

0 1 0 0

0 0 0 0

1
CCA ; 	�� D

0
BB@

0 0 0 �1
0 0 0 0

0 0 0 0

1 0 0 0

1
CCA : (1.1.16)

The projection tensors (1.1.11) have components

g
��

? D

0
BB@

0 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 0

1
CCA ; g

��

k D

0
BB@

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 �1

1
CCA : (1.1.17)

1.1.3 Basis 4-Vectors

Consider the response of a medium described by the response tensor ˘��.k/.
The tensor indices can depend only on the available 4-vectors and 4-tensors. In
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a magnetized medium the available 4-tensors and 4-vectors are f �� , k�, and the
4-velocity, Qu�, of the rest frame of the medium. It is possible to construct several
different sets of basis 4-vectors that may be used to represent ˘��.k/. For the
magnetized vacuum, Qu� is undefined, and one needs a set that does not involve
it. A set that involves Qu� is more convenient for a material medium.

Basis 4-Vectors for the Magnetized Vacuum

One can construct four mutually orthogonal 4-vectors from k� and the Maxwell
tensor for the magnetostatic field. A convenient choice is

k
�

k D g
��

k k� D .!=c; 0; 0; kz/; k
�

? D g
��

? k� D .0; k?; 0; 0/;

k
�
G D �f ��k� D .0; 0; k?; 0/; k

�
D D 	��k� D .kz; 0; 0; !=c/; (1.1.18)

where the components apply in a frame in which the magnetic field is along the
3-axis, and k is in the 1–3 plane. In terms of this choice of basis 4-vectors, the
4-tensors (1.1.16) and (1.1.17) become

f �� D �k
�

?k�G � k�Gk�?
k2?

; 	�� D �k
�

k k
�
D � k�Dk�k
.k2/k

;

g
��

k D k
�

k k
�
k � k�Dk�D
.k2/k

; g
��

? D �k
�

?k�? C k
�
Gk

�
G

k2?
; (1.1.19)

with .k2/k D k
�

k kk� D !2 � k2z , .k2/? D k
�

?k?� D �k2?.
Writing the response 4-tensor in terms of invariant components along the 4-

vectors (1.1.18) gives

˘��.k/ D
X
A;B

˘AB.k/ k
�
Ak

�
B; ˘AB.k/ D k

�
Ak

�
B

k2Ak
2
B

˘��.k/; (1.1.20)

with A;B Dk;?;D;G. The charge-continuity and gauge-invariance relations,
k�˘

��.k/ D 0, k�˘��.k/ D 0, imply that the invariant components ˘AB.k/

in (1.1.20) satisfy

.k2/k˘kB.k/ D k2?˘?B.k/; .k2/k˘Ak.k/ D k2?˘A?.k/; (1.1.21)

with A;B Dk;?;D;G.
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Shabad’s Basis 4-Vectors

A related choice of basis 4-vectors, made by Shabad [24], is

b
�
1 D k

�
G; b

�
2 D k

�
D; b

�
3 D k

�

? C k�k2?=k2; b
�
4 D k�: (1.1.22)

In a form analogous to (1.1.20), the response tensor,

˘��.k/ D
3X

A;BD1
˘AB.k/ b

�
Ab

�
B; (1.1.23)

involves only six invariant components, with the counterpart of (1.1.21) becoming
˘4B.k/ D 0 D ˘A4.k/.

The set (1.1.22) of basic vectors b�A with A D 1; 2; 3 may be replaced by any
linear combination of them that preserves the orthogonality condition. In particular,
one can choose a linear combination that separates longitudinal and transverse parts.
Let this choice be denoted b�A0 , with A0 D 10; 20; 30. One requires that two of these
satisfy bA0 � k D 0, and that the third has its 3-vector part parallel to k. The
combination kzb

�
2 C !b

�
3 has its 3-vector part proportional to k. Thus the choice

of (unnormalized) basis 4-vectors,

b
�

10 D b
�
1 ; b

�

20 / !k2?b
�
2 � k2kzb

�
3 ; b

�

30 / kzb
�
2 C !b

�
3 ; (1.1.24)

allows one to project onto the transverse plane, due to b�
10 , b

�

20 being transverse and
b
�

30 being longitudinal. (This procedure breaks down for the special case k2 D 0.)
The normalization of these 4-vectors is problematic. Only one of the 4-vectors

can be time-like, and this 4-vector is to be normalized to unity with the others three
4-vectors normalized to minus unity. However, which of them is time-like depends
on the signs of the invariants k2 and .k2/k D !2 � k2z . The choice (1.1.24) is not
used in the following.

Basis 4-Vectors for a Magnetized Medium

In the presence of a medium, the 4-vector, Qu�, of the rest frame of the medium
may be chosen as one of the basis 4-vectors, and it is then the only time-like basis
4-vector. One needs three independent space-like 3-vectors. Given the unit 3-vectors
κ D k=jkj and b along the wave 3-vector and the magnetostatic field, respectively,
an orthonormal set of 3-vectors in the rest frame is 
� D Œ0;κ�, a� D Œ0; a�, t� D
Œ0; t�, with

a D �κ � b=jκ � bj; t D �κ � a: (1.1.25)
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A covariant form of these definitions is


� D k� � k Qu Qu�
Œ.k Qu/2 � k2�1=2

; a� D � b
�
1

k?
; t� D ��˛ˇ� Qu˛
ˇa� ; (1.1.26)

with the fourth basis 4-vector being Qu�.
To interpret these basis vectors further, it is helpful to express other quantities that

appear in the rest frame in terms of invariants. Let the angle between the 3-vector k

and B in the rest frame be � . One has

! D k Qu; jkj2 D .k Qu/2 � k2;

sin2 � D k2?
.k Qu/2 � k2 ; cos2 � D .k Qu/2 � .k2/k

.k Qu/2 � k2
: (1.1.27)

Using these relations one may rewrite many of the formulae in the noncovariant
theory in a covariant form.

The 4-vectors (1.1.26) may be written in terms of the angles (1.1.27) in the rest
frame of the medium. With the 3-axis along the magnetic field and k in the 1–3
plane, one finds

Qu� D .1; 0; 0; 0/; 
� D .0; sin �; 0; cos �/;

a� D .0; 0; 1; 0/; t� D .0; cos �; 0;� sin �/: (1.1.28)

The 4-vectors t�, a� span the 2-dimensional transverse space, and may be chosen
as basis vectors for the representation of transverse polarization states.

An alternative choice of basis 4-vectors, closely related to the set (1.1.28), is
the set

Qu� D .1; 0; 0; 0/; e
�
1 D .0; 1; 0; 0/;

e
�
2 D .0; 0; 1; 0/; b� D .0; 0; 0; 1/: (1.1.29)

Covariant definitions of the last three of these correspond to e�1 D k
�

?=k?, e�2 D
k
�
G=k?, b� D B�=B , with B� defined by (1.1.10).

1.1.4 Linear and Nonlinear Response Tensor

The response of a plasma is described in terms of the linear response tensor
and a hierarchy of nonlinear response tensors. The definition of these response
tensors follow from an expansion of the induced current in the plasma in powers
of a fluctuating electromagnetic field. This is referred to as the weak-turbulence
expansion. The linear response tensor is defined by the leading term in this
expansion.
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Weak-Turbulence Expansion

The expansion of the induced current density, J�ind.x/, in powers of the electromag-
netic field, described by A�.x/, is made in terms of their Fourier transforms in time
and space. The Fourier transform and its inverse for the induced current is

J
�

ind.k/ D
Z
d4x eikx J

�

ind.x/; J
�

ind.x/ D
Z

d4k

.2
/4
e�ikx J �ind.k/: (1.1.30)

The weak-turbulence expansion is

J
�
ind.k/ D ˘�

�.k/A
�.k/C

Z
d�.2/ ˘.2/�

��.�k; k1; k2/A�.k1/A�.k2/

C
Z
d�.3/ ˘.3/�

��� .�k; k1; k2; k3/A�.k1/A�.k2/A�.k3/C � � �

C
Z
d�.n/ ˘.n/�

�1�2:::�n.�k; k1; k2; : : : ; kn/ A�1.k1/A�2.k2/ : : : A�n.kn/
C � � � ; (1.1.31)

where the n-fold convolution integral is defined by

d�.n/ D d4k1

.2
/4
d4k2

.2
/4
� � � d

4kn

.2
/4
.2
/4ı4.k � k1 � k2 � � � � � kn/; (1.1.32)

with ı4.k/ D ı.k0/ı.k1/ı.k2/ı.k3/. The expansion (1.1.31) defines the linear
response tensor ˘��.k/ and a hierarchy of nonlinear response tensors, of which
only the quadratic response tensor ˘.2/���.k0; k1; k2/, with k0 C k1 C k2 D 0, and
the cubic response tensor ˘.3/����.k0; k1; k2; k3/, with k0 C k1 C k2 C k3 D 0, are
usually considered when discussing specific weak-turbulence processes.

General Properties of ˘ ��.k/

The linear response tensor satisfies several general conditions.
The reality condition on Fourier transforms is that reversing the sign of k� and

complex conjugating has no net effect. Hence one has

˘��.�k/ D ˘���.k/; (1.1.33)

where � denotes the complex conjugate. The Fourier transform of the charge-
continuity condition, @�J

�

ind.x/ D 0 implies the first of

k�˘
��.k/ D 0; k�˘

��.k/ D 0: (1.1.34)
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The second of (1.1.34) is the gauge-invariance condition. It is desirable that the
description of the response be independent of the choice of gauge forA�.k/, and an
arbitrary gauge transformation involves adding a term proportional to k� to A�.k/.
Imposing the second of the conditions (1.1.34) ensures that ˘��.k/ is independent
of the choice of gauge.

A third general condition is that a separation of ˘��.k/ into hermitian (H )
and antihermitian (A) parts is equivalent to a separation into the time-reversible
or non-dissipative part of the response, and the time-irreversible or dissipative part
of the response, respectively. These two parts are

˘H��.k/ D 1
2
Œ˘��.k/C˘���.k/�; ˘A��.k/ D 1

2
Œ˘��.k/�˘���.k/�;

(1.1.35)
respectively.

Onsager Relations

The Onsager relations follow from the time-reversal invariance properties of the
equations of motion used in any calculation of the response tensor. The choice
of basis 4-vectors (1.1.28) is particularly convenient for expressing the Onsager
relations:

˘00.!;�k/ j�B0 D ˘00.!;k/ jB0 ; ˘0i .!;�k/ j�B0 D �˘i0.!;k/ jB0 ;

˘ij .!;�k/ j�B0 D ˘ji.!;k/ jB0 ; (1.1.36)

where the reversal of the sign of any external magnetostatic field is noted explicitly.
With the choice of coordinate axes in (1.1.28), the Onsager relations (1.1.36) imply

˘01.!;k/ D ˘10.!;k/;

˘03.!;k/ D ˘30.!;k/;

˘13.!;k/ D ˘31.!;k/;

˘02.!;k/ D �˘20.!;k/;

˘12.!;k/ D �˘21.!;k/;

˘23.!;k/ D �˘32.!;k/: (1.1.37)

In terms of the invariant components introduced in (1.1.20), the Onsager relations
imply

˘AB.k/ D ˘BA.k/; A;B Dk;?;DI ˘AG.k/ D �˘GA.k/; A Dk;?;D;
(1.1.38)

with k�G D Œ0; k?a� in the frame defined by (1.1.28).
An important implication for the polarization vector of a wave in a magnetized

medium is that its component along the a-axis (the 2-axis or y-axis for k in the 1–
3 plane) is out of phase with the other components. Thus, one can choose an overall
phase factor such that the 2-component (a-component) is imaginary and the 0-, 1-,
3-components (Qu-, κ-, t-components) are all real.
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1.2 Covariant Cold Plasma Model

A covariant formulation of the cold plasma model is used in this section to
calculate the linear response tensor for a cold magnetized plasma. Cold plasma
theory generalizes the magnetoionic theory, also called the Appleton-Hartree theory,
which was developed in the 1930s [4, 13] to describe radio wave propagation in
the ionosphere. The magnetoionic theory describes the response of a cold electron
gas, and the generalization to include the motion of the ions was made in the
1950s [26, 27].

Natural units („ D c D 1) are used in this an subsequent sections, except where
stated otherwise.

1.2.1 Fluid Description of a Cold Plasma

A cold plasma, in which thermal or other random motions are neglected, can be
described using fluid equations, with one fluid for each species of particle. Consider
particles of species ˛, with charge q˛ and mass m˛. For simplicity in writing, the
affix ˛, denoting the species, is suppressed for the present, with the charge and mass
denoted by q and m, respectively.

The fluid equations in covariant form involve the proper number density, npr.x/,
and the fluid 4-velocity, u�.x/. The equation of continuity is

@�
�
npr.x/u

�.x/
� D 0: (1.2.1)

The equation of motion for the fluid is

u�.x/@�u�.x/ D q

m

�
F
��
0 C @�A�.x/ � @�A�.x/

�
u�.x/; (1.2.2)

where the contributions of the static field F ��
0 and of a fluctuating field F ��.x/ D

@�A�.x/ � @�A�.x/ are included separately in the 4-force on the right hand side.
The operator u�.x/@� in (1.2.2) may be interpreted as the total derivative @=@�.x/,
where �.x/ is the proper time along the flow lines of the fluid. The derivative
@=@�.x/ arises naturally in a covariant (Lagrangian or Hamiltonian) treatment of
particle dynamics, and in a fluid (Eulerian) theory it is interpreted as the convective
derivative u� .x/@� .

The response of the plasma is identified as the induced 4-current density:

J
�

ind.x/ D qnpr.x/ u�.x/: (1.2.3)

The objective is to expand npr.x/ u�.x/ in powers of the perturbing electromagnetic
field, described by A�.x/, and to identify the response tensor from the Fourier
transform of (1.2.3).
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Fourier Transform of the Fluid Equations

The first steps in evaluating the induced current for a cold plasma are to Fourier
transform the fluid Eqs. (1.2.1) and (1.2.2) and the induced current (1.2.3), and to
carry out a perturbation expansion in powers of A�.

The Fourier transformed form of the continuity Eq. (1.2.1) is
Z
d�.2/ npr.k1/ ku.k2/ D 0; (1.2.4)

where the convolution integral is defined by (1.1.32) with n D 2. The Fourier
transform of the equation of fluid motion (1.2.2) is
Z
d�.2/ k2u.k1/ u�.k2/ D i

q

m
F
��
0 u�.k/

� q

m

Z
d�.2/ k1u.k2/G

��
�
k1; u.k2/

�
A�.k1/; (1.2.5)

with

G��.k; u/ D g�� � k�u�

ku
: (1.2.6)

The induced 4-current (1.2.3) becomes

J
�
ind.k/ D

Z
d�.2/ npr.k1/ u�.k2/: (1.2.7)

The 4-current has contributions from each species, only one of which is included
in (1.2.7).

Expansion in Powers of the 4-Potential

In the weak-turbulence expansion for a fluid, the proper number density and the
fluid 4-velocity are expanded in powers of A.k/.

The expansion of the proper number density is

npr.k/ D Nnpr .2
/
4ı4.k/C

1X
ND1

n.N/pr .k/; (1.2.8)

where the zeroth order proper number density is denoted Nnpr. In the rest frame of a
cold fluid, all the particle are at rest, and in this frame the proper number density is
equal to the actual number density, Nn say. In the following, Nn is used to describe the
number density of the fluid, where Nn is the actual number density in the rest frame
of the fluid. Where no confusion should result, Nn is written as n. The expansion of
the fluid 4-velocity gives

u�.k/ D Qu�.2
/4ı4.k/C
1X
ND1

u.N /�.k/: (1.2.9)
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The zeroth order fluid 4-velocity is necessarily nonzero, being Qu� D .1; 0; 0; 0/ in
the rest frame of the fluid. More generally, the fluid has a nonzero velocity along the
direction of the magnetic field, and the associated 4-velocity may be interpreted as
that of the rest frame of the fluid, and written

Qu� D Qu�k D Q�.1; 0; 0; Qvz/; Q� D �
1� Qv2z

��1=2
: (1.2.10)

Fluid flow (for a charged fluid) across the magnetic field is inconsistent with the
assumption that there is no static electric field. The expansion of the induced 4-
current (1.2.7) gives

J
�
ind.k/ D qnQu�.2
/4 ı4.k/C

1X
ND1

J .N/�.k/: (1.2.11)

The zeroth order current density, qnQu�, associated with a given fluid is nonzero, but
is usually ignored. The justification for this is either that the contributions to the
4-current from different species sum to zero, or that the static fields generated by
this current density are negligible.

1.2.2 Linear Response Tensor: Cold Plasma

The derivation of˘��.k/ using the fluid model involves only the linear terms in the
expansion of the fluid equations. The space components,˘ij .k/, are simply related
to the components of the dielectric tensor Ki

j .k/, used in a conventional 3-tensor
description.

First Order Current

The first order term in the expansion (1.2.11) of the current determines the linear
response. On substituting (1.2.8) and (1.2.9) into (1.2.11), for N D 1 one has

J .1/�.k/ D q
�
n u.1/�.k/C n.1/.k/ Qu��; (1.2.12)

where the subscript ‘ind’ is omitted. To first order, the equation of continuity (1.2.4)
gives

k Qu n.1/.k/ D �nku.1/.k/; (1.2.13)

which determines the first order number density in terms of the first order fluid
velocity. The first order fluid velocity is determined by the first order terms
in (1.2.5):

k Qu u.1/�.k/ D i
q

m
F
��
0 u.1/� .k/ � q

m
k QuG��.k; Qu/A�.k/: (1.2.14)
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Let the solution of (1.2.14) be written

u.1/�.k/ D � q

m
���.k Qu/G��.k; Qu/A�.k/: (1.2.15)

An an explicit form for the tensor ���.!/ is derived below.
On inserting (1.2.13) and (1.2.15) into (1.2.12), one identifies the linear response

tensor by writing J .1/�.k/ D ˘��.k/A�.k/. The resulting cold plasma response
tensor is

˘��.k/ D �q
2n

m Q� G
˛�.k; Qu/�˛ˇ.k Qu/Gˇ�.k; Qu/: (1.2.16)

Note that, by hypothesis, any zeroth order motion is along the magnetic field lines,
so that Qu is equal to Quk, implying that the response tensor (1.2.16) is independent
of k?.

1.2.3 Tensor ���.!/

The tensor ���.!/, introduced in (1.2.15), is constructed as follows. Write (1.2.14)
in the form

Œk Qug�� C i�˝0f
��� u.1/� .k/ D � q

m
k QuG��.k; Qu/A�.k/; (1.2.17)

with F��
0 D Bf �� , � D �q=jqj, ˝0 D jqjB=m. In the rest frame of the plasma,

k Qu is the frequency !, and ���.!/ is defined as the inverse of the tensor !g�� C
i�˝0f

�� on the left hand side of (1.2.17). Specifically, the definition is

Œ!g�� C i�˝0f
��� ���.!/ D !g��: (1.2.18)

Solving (1.2.18) gives

���.!/ D g
��

k C !

!2 �˝2
0

�
!g

��

? � i�˝0f
��
�
: (1.2.19)

The matrix representation of ���.!/ is

���.!/ D

0
BBBBBBB@

1 0 0 0

0 � !2

!2 �˝2
0

i�˝0!

!2 �˝2
0

0

0 � i�˝0!

!2 �˝2
0

� !2

!2 �˝2
0

0

0 0 0 �1

1
CCCCCCCA
: (1.2.20)

In the unmagnetized limit, ˝0 ! 0, ���.!/ reduces to g�� .
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Note the unconventional choice of the sign � D �q=jqj, which is positive, � D
C1, for electrons and negative, � D �1, for positively charged ions. This choice
is made for convenience with comparison with the relativistic quantum case, where
� D ˙1 is a quantum number labeling electron and positron states.

Alternative Forms for the ˘ ��.k/

The explicit form (1.2.16) for the cold plasma response tensor is written in a concise
notation, and a more explicit form is obtained by using the explicit form (1.2.6) for
G��.k; u/ and (1.2.19) for ���.!/. This form is

˘��.k/ D �q
2n

m Q�

(
g
��

k � k
�

k Qu� C Qu�k�k
k Qu C .k2/k Qu� Qu�

.k Qu/2

C .k Qu/2
.k Qu/2 �˝2

0

�
g
��

? � k
�

? Qu� C Qu�k�?
k Qu � k2? Qu� Qu�

.k Qu/2
�

� i�˝0

.k Qu/2 �˝2
0

�
k Quf �� C k

�
G Qu� � Qu�k�G

�)
; (1.2.21)

where k�?, k�G are defined by (1.1.18). Note that because Qu is restricted to the 0–3
plane, one has .k Qu/? D 0 and k Qu D .k Qu/k.

An alternative way of writing (1.2.21) is in terms of the 4-vector k�D D
.kz; 0; 0; !/, rather than Qu�. One has

.k2/k Qu� D !k
�

k � kzk
�
D: (1.2.22)

The result (1.2.21) can be rewritten so that Qu� does not appear explicitly using
k Qu D !,

g
��

k D k
�

k k
�
k � k�Dk�D
.k2/k

; (1.2.23)

so that the tensors in (1.2.21) become

g
��

k � k
�

k Qu� C Qu�k�k
k Qu C .k2/k Qu� Qu�

.k Qu/2 D �k
�
Dk

�
D

!2
;

k
�

? Qu� C Qu�k? D !
k
�

?k�k C k
�

k k
�?

.k2/k
� kz

k
�

?k�D C k
�
Dk?

.k2/k
;

Qu� Qu�
.k Qu/2 D !2

.k2/2k
.k
�

k k
�
k C k

�
Dk

�
D/� k

�
Dk

�
D

.k2/k
� !kz

.k2/2k
.k
�

k k
�
D � k�Dk�k /;

k
�
G Qu� � Qu�k�G D !

k
�
Gk

�
k � k

�

k k
�
G

.k2/k
� kz

k
�
Gk

�
D � k

�
Dk

�
G

.k2/k
: (1.2.24)
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The forms on the right hand sides of (1.2.24) appear naturally when the relativistic
quantum form of the response tensor, derived in � 9.2, is use to rederive the cold-
plasma form in � 9.4.

1.2.4 Cold Plasma Dielectric Tensor

The dielectric tensor,Ki
j .k/, is related to the mixed 3-tensor components˘i

j .k/,
which are numerically equal to �˘ij .k/. The contravariant space components
of (1.2.21), with Qu� ! �.1; 0; 0; ˇ/, are

˘ij .k/ D �q
2n

m�

( �
� !2

�2.! � kzˇ/2
� k2?ˇ2

.! � kzˇ/2 �˝2

�
bibj

C .! � kzˇ/
2g

ij

? � .! � kzˇ/.k
i
?bj C k

j

?bi/ˇ
.! � kzˇ/2 �˝2

� i�˝
�
.! � kzˇ/f

ij C .kiGb
j � bj kiG/ˇ

�

.! � kzˇ/2 �˝2

)
; (1.2.25)

where b is a unit vector along the 3-axis, k? and kG are vectors of magnitude k?
along the 1- and 2-axes, respectively, with gijk D �bibj , gij? diagonal �1;�1; 0,

f ij nonzero only for f 12 D �f 21 D �1, and with ˝ D ˝0=� . In the absence of a
streaming motion, (1.2.25) simplifies to

˘ij .k/ D �q
2n

m
�ij .!/ D �q

2n

m

�
!

!2 �˝2
0

�
!g

ij

? � i�˝f ij
	

� bibj
�
: (1.2.26)

The dielectric tensor is

Ki
j .k/ D ıij C 1

"0!2
˘i

j .k/ D ıij � !2p

!2
�i j .!/; (1.2.27)

with !2p D q2n="0m, and with

�i j .!/ D

0
BBBB@

!2

!2 �˝2
0

� i�˝0!

!2 �˝2
0

0

i�˝0!

!2 �˝2
0

!2

!2 �˝2
0

0

0 0 1

1
CCCCA
: (1.2.28)

The cold plasma dielectric 3-tensor follows from (1.2.27) with (1.2.28) by adding
a label, ˛ say, for each species and summing over the species. This gives the standard
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form [26, 27]

Ki
j D

0
@
S �iD 0

iD S 0

0 0 P

1
A ; (1.2.29)

with each of S;D;P involving a sum over the species

S D 1

2
.RC CR�/; D D 1

2
.RC �R�/; P D 1 �

X
˛

!2p˛

!2
; (1.2.30)

with

R˙ D 1 �
X
˛

!2p˛

!2
!

! � �˛˝˛

; (1.2.31)

where ��˛ is the sign of the charge of species ˛. The dependence of Ki
j and

of S;D;P;R˙ on ! is implicit. The ˙ labeling of R˙ is chosen such that the
resonance, specifically an infinite value at ! D ˝˛ , occurs in RC for charges that
spiral in a right hand sense (electrons, �e D 1) and in R� for charges that spiral in a
left hand sense (ions, �i D �1).

No damping is included in the version of cold plasma theory discussed here; this
is reflected in the dielectric tensor (1.2.29) being hermitian. It implies that the waves
are undamped. Collisional damping can be included by including a frictional term
in the fluid equations, but this is not done here.

Further quantities constructed fromKi
j appear in the derivation of the dispersion

equation and the construction of the polarization vectors. These include the trace and
the longitudinal part of the tensor,

K1 D Ks
s D 2S C P; KL D �
i
j Ki

j D S sin2 � C P cos2 �; (1.2.32)

the determinant of the tensor,

det ŒKi
j � D P.S2 �D2/; (1.2.33)

the square of the tensor,

Ki
s K

s
j D

0
@
S2 CD2 �iSD 0

iSD S2 CD2 0

0 0 P 2

1
A ; (1.2.34)

and the trace and the longitudinal part of the square

K2 D Kr
s K

s
r D 2.S2 CD2/C P2; KL

2 D .S2 CD2/ sin2 � C P2 cos2 �:
(1.2.35)
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Dielectric Tensor for a Cold Electron Gas

At frequencies much higher than the ion plasma frequency and the ion gyrofre-
quency, the contribution of the ions can be neglected. The dielectric tensor (1.2.29)
then describes the response of a cold electron gas, with S;D;P given by

S D !2 � !2p �˝2
e

!2 �˝2
e

; D D � �!2p˝e

!.!2 �˝2
e /
; P D 1 � !2p

!2
; (1.2.36)

with � D 1 for electrons. In the presence of an admixture of positrons, the parameter
� can be re-interpreted as the ratio of the difference to the sum of the number
densities of the cold electrons and positrons.

The response tensor can be written in terms of two dimensionless magnetoionic
parameters

X D !2p

!2
; Y D ˝e

!
: (1.2.37)

In terms of these parameters, S;D;P in (1.2.36) become

S D 1 � X

1 � Y 2 ; D D � �XY

1 � Y 2
; P D 1 �X: (1.2.38)

1.3 Inclusion of Streaming Motions

A covariant formulation of the cold plasma response facilitates the inclusion of
streaming motions. The response 4-tensor may be calculated in the frame in
which there is no streaming motion, and transformed to the frame where the
plasma has the specified streaming motion. In the presence of a magnetic field this
applies only to streaming motions along the magnetic field lines. This procedure
is used here in three ways. First, it is applied to the plasma as a whole. Second,
different streaming motions are introduced for different components in the plasma,
allowing the existence of instabilities due to counterstreaming motions. Third, a
multi-fluid model is used to write down the response tensor for an arbitrary one-
dimensional (1D), strictly-parallel (p? D 0) distribution of particles by summing
over infinitesimal distributions with different streaming velocities.

1.3.1 Lorentz Transformation to Streaming Frame

Given the response tensor, ˘��.k/, in one inertial frame, one can write it down in
any other frame by making the appropriate Lorentz transformation. Let K and K 0
be two inertial frames, and let L�

0

� and its (matrix) inverse L��0 be the Lorentz
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transform matrices between K and K 0. These matrices are defined such that any
4-vector with contravariant components a� in K and a�

0

in K 0 satisfies

a�
0 D L�

0

� a
�; a� D L��0 a�

0

; (1.3.1)

with
L��0 L�

0

� D ı�� ; L�
0

� L
�
�0 D ı

�0

�0 : (1.3.2)

Given˘��.k/ in K , the response tensor in K 0 is ˘�0�0

.L�1k0/, with

.L�1k0/� D L��0 k�
0

: (1.3.3)

For the purpose of including a streaming motion in a magnetized plasma one is
concerned with a boost in which the axes inK andK 0 are parallel, andK 0 is moving
along the 3-axis of K at velocity �ˇ. In K 0 the streaming velocity of a plasma at
rest in K is then ˇ. The explicit forms for the transformation matrices in this case
are, denoting the dependence of ˇ explicitly,

L�
0

�.ˇ/ D

0
BB@

� 0 0 ��ˇ
0 1 0 0

0 0 1 0

��ˇ 0 0 �

1
CCA ; L��0.ˇ/ D

0
BB@

� 0 0 �ˇ

0 1 0 0

0 0 1 0

�ˇ 0 0 �

1
CCA ; (1.3.4)

with � D .1 � ˇ2/�1=2.
It is sometimes useful to write the dependence of ˘��.k/ on k, in terms of

invariants that involve k. In any other inertial frame the components of the response
are given by applying a Lorentz transformation to ˘��.k/, and by expressing the
invariants that involve k in terms of k0.

Streaming Cold Distribution

The contribution to the response 4-tensor from a single cold distribution of particles
may be written in the concise form

˘��.k/ D �q
2npr

m
G˛�.k; u/�˛ˇ.ku/Gˇ�.k; u/: (1.3.5)

For a streaming distribution, the 4-velocity, u�, is interpreted as the streaming
4-velocity of a streaming distribution of cold particles. The proper number density
(for a cold plasma) is related to the actual number density, n, in the chosen frame in
which the plasma is streaming with Lorentz factor � by npr D n=� .

An alternative way of writing (1.3.5) is
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˘��.k/ D �q
2npr

m

(
���.ku/ � 1

ku
Œu�k˛�

˛�.ku/

Ckˇ��ˇ.ku/u��C k˛kˇ�
˛ˇ.ku/

u�u�

.ku/2

)
: (1.3.6)

A further alternative way of writing (1.3.5) is

˘��.k/ D �q
2n

m�

(
� k

�
Dk

�
D

.ku/2
C 1

.ku/2 �˝2
0

�
.ku/2 g��? � ku .k�?u� C u�k�?/

�k2?u�u� � i� ˝0

�
ku f �� C k

�
Gu� � u�k�G

��)
; (1.3.7)

where the 4-vectors introduced in (1.3.7) are defined by (1.1.18). With the
form (1.3.7), the gyrotropic terms are those that depend on the sign, ��, of the
charge.

The space components of (1.3.7), for streaming at velocity ˇ, are

˘ij .k/ D �q
2n

m�

( �
� !2

�2.! � kzˇ/2
� k2?ˇ2

.! � kzˇ/2 �˝2

�
bibj

C .! � kzˇ/
2g

ij

? � .! � kzˇ/.k
i?bj C k

j

?bi/ˇ
.! � kzˇ/2 �˝2

� i�˝
�
.! � kzˇ/f

ij C .kiGb
j � bj kiG/ˇ

�

.! � kzˇ/2 �˝2

)
; (1.3.8)

where b is a unit vector along the 3-axis, k? and kG are vectors of magnitude k?
along the 1- and 2-axes, respectively, with gijk D �bibj , gij? diagonal .�1;�1; 0/,
f ij nonzero only for f 12 D �f 21 D �1, and with ˝ D ˝0=� .

Multiple Streaming Cold Components

The generalization of a single cold streaming distribution to a plasma consisting
of several cold species in relative motion to each other follows by summing over
the relevant contributions to the response 4-tensor. Let ˛ label an arbitrary species,
which has charge q˛ D ��˛jq˛j, mass m˛, number density n˛ , cyclotron frequency
˝˛ and 4-velocity u�˛ D Œ�˛; �˛v˛b�. With this generalization (1.3.5) implies

˘��.k/ D
X
˛

� q2˛n˛

m˛�˛
G��.k; u˛/�

.˛/

�� .ku˛/G
��.k; u˛/; (1.3.9)
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with (1.2.19) translating into

�.˛/��.!/ D g
��

k C !

!2 �˝2
˛

�
!g

��

? � i�˛˝˛f
��
�
: (1.3.10)

The alternative form (1.3.6) gives

˘��.k/ D
X
˛

� q2˛n˛

m˛�˛



�.˛/��.ku˛/ � 1

ku˛
Œu�˛k��

.˛/��.ku˛/

Ck��.˛/�� .ku˛/u
�
˛�C k�k��

.˛/�� .ku˛/
u�˛u�˛
.ku˛/2

�
: (1.3.11)

The sum over species ˛ may be interpreted as including a sum over different
components of a single species with different streaming motions. For example, in the
case of an electron gas that consists of two cold counterstreaming electron beams,
one can interpret the sum over ˛ as the sum over these two components.

1.3.2 Dielectric Tensor for a Streaming Distribution

In 3-tensor notation the response tensor is related to the dielectric tensor by
Ki

j .k/ D ıij C ˘i
j .k/="0!

2. In particular, the sum over components in (1.3.7),
rewritten in the form (1.3.6), translates into the dielectric tensor

Ki
j .k/ D ıij �

X
˛

!2p˛

�˛!2

(
�.˛/i j .ku˛/� v˛

! � kzv˛

�
bikr�

.˛/r
j .ku˛/

Cks�.˛/i s.ku˛/bj

�
C v2˛Œ!

2 C krk
s�.˛/r s.ku˛/� bibj

.! � kzv˛/2

)
; (1.3.12)

where !2p˛ D q2˛n˛="0m˛ defines the plasma frequency for species ˛. In matrix
form one has

τ.˛/.ku˛/ D

0
BBBB@

.! � kzv˛/
2

.! � kzv˛/2 �˝2
˛=�

2
˛

� i�˛.! � kzv˛/˝˛=�˛

.! � kzv˛/2 �˝2
˛=�

2
˛

0

i�˛.! � kzv˛/˝˛=�˛

.! � kzv˛/2 �˝2
˛=�

2
˛

.! � kzv˛/
2

.! � kzv˛/2 �˝2
˛=�

2
˛

0

0 0 1

1
CCCCA
: (1.3.13)

The resulting matrix form for the dielectric tensor (1.3.12) can be written

Ki
j D

0
@
S �iD Q

iD S �iR
Q iR P

1
A ; (1.3.14)

with the components identified as
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S D 1 �
X
˛

!2p˛

�˛!2
Œ�˛.! � kzv˛/�

2

Œ�˛.! � kzv˛/�2 �˝2
˛

;

P D 1 �
X
˛

!2p˛

�˛!2

�
!2

Œ�˛.! � kzv˛/�2
� �2˛k

2?v2˛
Œ�˛.! � kzv˛/�2 �˝2

˛

�
;

D D
X
˛

�˛
!2p˛

�˛!2
�˛.! � kzv˛/˝˛

Œ�˛.! � kzv˛/�2 �˝2
˛

;

Q D �
X
˛

!2p˛

�˛!2
�2˛k?.! � kzv˛/

Œ�˛.! � kzv˛/�2 �˝2
˛

;

R D �
X
˛

�˛
!2p˛

�˛!2
�˛k?v˛˝˛

Œ�˛.! � kzv˛/�2 �˝2
˛

: (1.3.15)

1.3.3 Cold Counterstreaming Electrons and Positrons

In an oscillating model for a pulsar magnetosphere [15], a parallel electric field,
Ez ¤ 0, accelerates the electrons and positrons, causing their streaming velocities
to be different. Unlike the case where there is a single streaming velocity, the
effect of relative streaming motions cannot be removed by a Lorentz transformation.
However, one can transform to a frame in which the electrons and positrons are
streaming in opposite directions with the same speed.

Consider the frame in which the streaming velocities, ˙ˇ, of electrons (� D 1)
and positrons (� D �1) are equal and opposite. Let their number densities be (note
C for electrons, � for positrons) written n˙ D n.1˙ N�/, n D nC C n�, N� D .nC �
n�/=.nC C n�/. One can identify two sources of gyrotropy is counterstreaming
pair plasma. One is due to a charge imbalance, N� ¤ 0. The other is due to a nonzero
current: the current density is J D �e.nCβC �n�β�/, with β˙ D ˙ˇb here. The
sign of the current-induced gyrotropy is determined by the sign of the velocity, ˇ.

One can write the response tensor in the form [30]

˘��.k/ D N̆ ��.k/ � N� Ŏ ��.k/; (1.3.16)

with Ki
j .k/ D ıij C �0˘

i
j .k/=!

2. It is convenient to introduce the notation

!2p D e2n

"0m
; !0 D �!; !k D �kzˇ; !? D �k?ˇ: (1.3.17)

The components of the response tensor that do not depend on N� are
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�0 N̆ 1
1 D �0 N̆ 2

2 D !2p

.!20 � !2k/2 �˝2.!20 C !2k/
.!20 C !2k �˝2/2 � 4!20!2k

;

�0 N̆ 3
3 D !2p

"
!2.!20 C !2k/
.!20 � !2k/2

C !2?.!20 C !2k �˝2/

.!20 C !2k �˝2/2 � 4!20!
2
k

#
;

�0 N̆ 1
3 D !2p

!k!?.!20 � !2k C˝2/

.!20 C !2k �˝2/2 � 4!20!2k
;

�0 N̆ 1
2 D �i!2p

˝e!k.!20 � !2k C˝2
e /

.!20 C !2k �˝2
e /
2 � 4!20!2k

;

�0 N̆ 2
3 D i!2p

˝e!?.!20 C !2k �˝2
e /

.!20 C !2k �˝2
e /
2 � 4!20!

2
k
: (1.3.18)

The components proportional to �N� are

�0 Ŏ 1
1 D �0 Ŏ 2

2 D !2p
2!0!k˝2

e

.!20 C !2k �˝2
e /
2 � 4!20!

2
k
;

�0 Ŏ 3
3 D �!2p

"
� 2!2!0!k
.!20 � !2k/2

� 2!2?!0!2k
.!20 C !2k �˝2

e /
2 � 4!20!

2
k

#
;

�0 Ŏ 1
3 D �!2p

!0!?.!20 � !2k �˝2
e /

.!20 C !2k �˝2
e /
2 � 4!20!

2
k
;

�0 Ŏ 1
2 D �i!2p

˝e!0.!
2
0 � !2k �˝2

e /

.!20 C !2k �˝2
e /
2 � 4!20!

2
k
;

�0 Ŏ 2
3 D i!2p

2˝e!0!?!k
.!20 C !2k �˝2

e /
2 � 4!20!

2
k
: (1.3.19)

The response of a counterstreaming pair plasma is gyrotropic even when the number
densities are equal ( N� D 0). This is due to the current from the oppositely directed
flows of oppositely charged particles; the sign of the current is determined by the
sign of ˇ, which is included in !k, !? in (1.3.18).

1.4 Relativistic Magnetohydrodynamics

The fluid description of a magnetized plasma is referred to as magnetohydrodynam-
ics (MHD). A relativistic generalization of MHD is presented here. The theory is
then used to derive the properties of MHD waves in relativistic plasmas. SI units
with c included explicitly are used in this section
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1.4.1 Covariant Form of the MHD Equations

The relativistic MHD equations can either be postulated [3, 16, 29] or derived from
kinetic (Vlasov) theory by taking moments. The zeroth and first moments lead to the
continuity equation and the equation of motion for the fluid, respectively. Closing
the expansion requires the introduction of another relation, which is identified as a
generalized Ohm’s law. Apart from Maxwell’s equations, the MHD also include an
equation of state for the fluid.

Basic Fluid Equations

Let the proper mass density be �.x/ and the fluid 4-velocity be u�.x/. The equation
of mass continuity is

@�Œ�.x/u
�.x/� D 0: (1.4.1)

The equation of fluid motion depends on the assumed forces on the fluid. Assuming
that the only forces are those internal to the system, including electromagnetic
forces, the equation of motion can be written in the form of a conservation equation
for the energy-momentum tensor:

@�
�
T
��

M .x/C T
��

EM.x/
� D 0; (1.4.2)

where T ��M .x/ is the energy-momentum tensor for the matter and T ��EM.x/ is the
energy-momentum tensor for the electromagnetic field. The terms in (1.4.2) can
be rearranged into the rate of change of the 4-momentum density in the fluid,
which arises from the kinetic energy contribution to T

��
M .x/, and thermal and

electromagnetic forces that arise from the thermal contribution to T ��M .x/ and from
T
��

EM.x/, respectively.

Energy-Momentum Tensor for the Fluid

The energy-momentum tensor for the matter is identified as

T
��

M D .�c2 C E C P/u�u� � Pg��; (1.4.3)

where �c2 is the proper rest energy density, E D U=V , where V is the volume
of the system, is the internal energy density and P is the pressure, and where the
dependence on x is implicit. The combined first and second laws of thermodynamics
imply the familiar relation dU D TdS�PdV , whereU is the internal energy, T is
the temperature and S is the entropy. Regarding U.S; V / as the state function, with
independent variables S; V , implies T D .@U=@S/V , P D �.@U=@V /S . In the
present case one has U D V E and V / 1=�. Making the physical assumption that
all changes are adiabatic, that is, at constant entropy, the relation P D �.@U=@V /S
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translates into

�
@E
@�

D E C P; (1.4.4)

where constant entropy is implicit. The right hand side is the enthalpy, U C PV .
Assuming an adiabatic law with an adiabatic index � one has

�
@E
@�

D � E ; (1.4.5)

with � D 5=3 for a monatomic nonrelativistic ideal gas, � D 4=3 for a highly
relativistic gas.

Electromagnetic Energy-Momentum Tensor

The electromagnetic energy-momentum tensor, which satisfies @�T
��

EM D J�F
�� ,

has the canonical form

T
��

EM D 1

�0

�
F �

˛ F
˛� C 1

4
g�� F˛ˇ F

˛ˇ
�
: (1.4.6)

The Maxwell tensor, F �� , may be written in terms of the 4-vectors E� D F��u� ,
B� D F��u� , defined for an arbitrary 4-velocity u, identified here as the fluid 4-
velocity. One has

F�� D E�u� �E�u�

c
C ���˛ˇu˛Bˇ; F�� D B�u� � B�u� � ���˛ˇu˛Eˇ

c
;

(1.4.7)
with Maxwell’s equations taking the form (1.1.4). The energy-momentum ten-
sor (1.4.6) becomes

T
��

EM D �B
�B�

�0
� "0E

�E� C �
1
2
g�� � u�u�

� �B�B�

�0
C "0E

�E�



: (1.4.8)

Combining (1.4.3) and (1.4.8), the total energy-momentum tensor for the system
of fluid and electromagnetic field is

T �� D
�
�c2 C E C P � B�B�

�0
� "0E

�E�



u�u�

�
�
P � B�B�

2�0
� 1

2
"0E

�E�



g�� � B�B�

�0
� "0E�E�: (1.4.9)
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Lagrangian Density for Relativistic MHD

Relativistic MHD is amenable to a Lagrangian formulation [1, 11]. The action
principle is

ı

Z
d4x �.x/ D 0; �.x/ D ��c2 � E CB�B�=2�0; (1.4.10)

where � is the proper mass density and E is the thermal energy density of the
fluid. One may regard the form (1.4.10) as a postulate that defines relativistic MHD.
The final term in (1.4.10) arises from the Lagrangian for the electromagnetic field,
LEM D �F ˛ˇF˛ˇ=4�0, with F�� D B�u� � B�u� for E� D 0.

The derivation of the equation of motion in the form (1.4.2) follows from the fact
that the Lagrangian (1.4.10) may be regarded as a functional of �, u� and B�: the
dependence on x is implicit in this functional dependence. The energy-momentum
tensor calculated from the Lagrangian (1.4.10) reproduces (1.4.9) for E� D 0:

T �� D
�
�c2 C E C jBj2

2�0



u�u� �

�
P C jBj2

2�0



h�� � jBj2

�0
b�b�;

h�� D g�� � u�u�; (1.4.11)

with jBj2 D �B�B� and where h�� projects onto the 3-dimensional hypersurface
orthogonal to the fluid 4-velocity. The equation of motion in the form (1.4.2)
corresponds to the conservation law @�T

�� D 0.

1.4.2 Derivation from Kinetic Theory

Fluid equations may be postulated or derived from kinetic theory. The latter
approach is outlined here.

Consider a species ˛, with rest mass m˛, charge q˛ , and with distribution
function F˛.x; p/. Fluid equations are obtained by considering moments of the
distribution function. For simplicity in writing, the x dependences of all quantities
are suppressed in the following equations.

The zeroth order moment defines the proper number density, n˛pr, for species ˛
and the corresponding proper mass density is

.�/˛ D m˛n˛pr; n˛pr D
Z

d4p

.2
/4
F˛.p/: (1.4.12)

The first moment defines the fluid 4-velocity, u�˛ :

n˛pru
�
˛ D

Z
d4p

.2
/4
F˛.p/

p�

m˛

: (1.4.13)
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Each species satisfies a continuity equation of the form (1.2.1), specifically

@�.n˛pru
�
˛ / D 0: (1.4.14)

The fluid is described by its proper mass density, �, and a fluid 4-velocity, u�,
given by

� D
X
˛

m˛n˛pr; u� D
X
˛

m˛n˛pru
�
˛=�; (1.4.15)

respectively. The continuity Eq. (1.4.1) for the fluid is then satisfied as a conse-
quence of (1.4.14) with (1.4.15).

The second moment of the distribution defines the energy-momentum tensor
for species ˛. This includes a contribution, .�/˛u�˛u�˛ , that corresponds to the rest
mass energy in the rest frame of the fluid. It is convenient to separate the energy-
momentum tensor into a part corresponding to its rest energy and a part due to
internal motions in the fluid:

T ��˛ D T ��˛rm C T
��

˛th ; T ��˛rm D .�/˛u�˛u�˛; (1.4.16)

where ‘rm’ denotes rest mass and ‘th’ denotes thermal motions. One has

T
��
˛th D

Z
d4p

.2
/4
F˛.p/m˛.u

��u�˛ /.u
��u�˛/ D .E˛CP˛/u�˛u�˛�P˛g��; (1.4.17)

where E˛ is the internal energy density and P˛ is the partial pressure for species ˛.
Assuming that the only force is electromagnetic, the equation of fluid motion for
species ˛ is

@�T
��
˛ D F �

�J
�
˛ ; (1.4.18)

with J�˛ D q˛n˛pru
�
˛ . On summing (1.4.18) over all species ˛, the net 4-force,

F �
�J

�, on the right hand side may be written as a 4-gradient and included in the
left hand side. From Maxwell’s equations one has J � D @�F

��=�0, and hence this
4-force becomesF �

�@�F
��=�0, which may be rewritten as �@�T ��EM, in terms of the

energy-momentum tensor (1.4.6). The equation of motion then reduces to (1.4.2).

1.4.3 Generalized Ohm’s Law

A characteristic difference between MHD and kinetic theory is the appeal in MHD
to some form of Ohm’s law to place a restriction on the electromagnetic field.
Two examples of Ohm’s law are discussed briefly here: that for a nonrelativistic,
collisional, electron-ion plasma, and that for a relativistic, collisionless pair plasma.
A two-fluid model is assumed in both cases, with the fluids being electrons and ions,
and electrons and positrons, respectively.
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In a nonrelativistic electron-ion plasma, the ratio, me=mi , of the mass of the
electron to the mass of the ion is a small parameter in which one can expand. The
fluid velocity is equal to the velocity of the ions to lowest order in me=mi , and the
current density is determined by the flow of the electrons relative to the ions. In the
presence of collisions, there is a drag on the electrons that may be represented by
a frictional force equal to ��e times the momentum of the electrons, where �e is
the electron collision frequency. In an isotropic plasma, the effect of the collisions
is described by a conductivity �0 D !2p="0�e . In a quasi-neutral plasma, when the
charge density is assumed negligible, the static response may be written in the 4-
tensor form

J� D ���E
�; ��� D �0.g

�� � u�u�/: (1.4.19)

The limit of infinite conductivity corresponds to �0 ! 1, �e ! 0, that is, to the
collisionless limit. In this limit, for the current to remain finite one requiresE� D 0.

In the presence of a magnetic field the conductivity is anisotropic. The conductiv-
ity tensor may be obtained from the response tensor for a cold, magnetized electron
gas by replacing the frequency, !, in the rest frame by ! C i�e to take account of
the collisions. This corresponds to identifying ��� as i˘��=ku with ˘�� given by
the cold plasma form (1.3.5). In (1.3.5) one makes the replacement k Qu ! ku C i�e,
and projects onto the 3-dimensional hyperplane orthogonal to u�. This gives

��� D i!2p

"0.ku C i�e/
Œ���.ku C i�e/ � u�u�� ; (1.4.20)

with ���.!/ given by (1.2.19). In the static limit, ku ! 0, one has

��� D !2p

"0�e

�
�b�b� C g

��

? C .˝e=�e/f
��

1C˝2
e=�

2
e

�
: (1.4.21)

In the limit �e ! 0 only the component along b�b� becomes infinite, and this
requires the condition Eb D �Ez D 0; the Hall term (/ f ��) remains finite, and
the Pedersen terms (/ g

��

? ) tends to zero in this limit.

1.4.4 Two-Fluid Model for a Pair Plasma

A two-fluid model for a relativistic electron-positron plasma with no thermal
motions enables one to calculate E� and to discuss the assumption that it is zero
in relativistic MHD. In this case there is no obvious small parameter, such as the
mass ratio, that allows one to justify a simple approximation to Ohm’s law.

One may rearrange the fluid Eqs. (1.4.14) and (1.4.18) for ˛ D ˙, m˙ D me,
E˙ D 0 D P˙, for electrons and positrons, respectively, into equations for the
variables
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n D nC C n�; � D �e.nC � n�/;

u� D nCu�C C n�u��
n

; J � D �e.nCu�C � n�u��/: (1.4.22)

The first two of the variables (1.4.22) are the proper number density and the proper
charge density, respectively. The equations of continuity (1.4.14) for ˛ D ˙ imply
continuity equations @�.nu�/ D 0 for mass and @�J � D 0 for charge. The equations
of motion (1.4.18) for ˛ D ˙ imply an equation of motion for the fluid of the
form (1.4.2) and an equation for the current. The equation of motion for the fluid is

@�T
��

M D F �
ˇJ

ˇ; T
��

M D nmu�u� C m

ne2
.J � � �u�/.J � � �u�/

1 � �2=n2e2 : (1.4.23)

The term nmu�u� is the conventional energy-momentum tensor for a cold fluid,
and conventional MHD is justified only if the additional term in (1.4.23) can be
neglected.

The generalized Ohm’s law is identified by calculatingE� D F �
ˇuˇ with u given

by (1.4.22). Using the equations of motion (1.4.18) together with (1.4.22) implies

E� D 1

ne
@�

�
u�J � C u�J � � �.u�u� C J�J �=n2e2/

1 � �2=n2e2

�
; (1.4.24)

which gives the electric field in the rest frame of the fluid. The assumption E� D 0

in conventional MHD applies to a pair plasma only if one can justify neglecting the
right hand side of (1.4.24). If the assumption cannot be justified, relativistic MHD is
not valid and should not be used. Relativistic MHD can break down for a variety of
reasons [19], including that there are too few charges to carry the required current
density.

It might be remarked that the ideal MHD assumption that the electric field is
zero in the rest frame of the plasma is usually justified by arguing that in the
limit of infinite conductivity a nonzero E would imply an infinite J, which is
unphysical. However, in the collisionless limit, �e ! 0, only the parallel component
of the conductivity becomes infinite in a magnetized plasma. The argument for the
perpendicular component of E is different. A nonzero E? causes all particles to drift
across the field lines with a velocity �E � B=jBj2. The E? is removed by Lorentz
transforming to the frame in which the plasma is stationary. The plasma is at rest in
the frame E? D 0.

1.4.5 MHD Wave Modes

The properties of (small amplitude) waves in relativistic MHD are determined by a
wave equation that may be derived from the Lagrangian. Suppose that there is an
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oscillating part of the fluid displacement, such that one has

x� ! x
�
0 C ıx�; ıx� D ��e�i˚ C c.c.; (1.4.25)

where x�0 is the fluid displacement in the absence of the fluctuations. (The subscript
0 is omitted below after making the expansion.) The phase, or eikonal, ˚ , satisfies
k� D @�˚ . The 4-velocity has a small perturbation, given by the derivative
of (1.4.25) with respect to proper time. This gives u� ! u�0 C ıu�, with ıu� D
�i!�� to first order in the perturbation. The normalization u2 D 1 must be
preserved, and to lowest order, this requires �u D 0. In the following it is assumed
that ��, like B�, has no component along u�.

On averaging the action (1.4.10) over the phase, only terms of even power in �
remain. The first two terms implied by the phase average are [1]

L.0/.x/ D ��c2 � E C B�B�=2�0; (1.4.26)

L.2/.x/ D � ��c2 C P C E
�
.ku/2 ��� � �P k� k��

� 1

�0

˚
ŒB� B�� � B�B� ��

��.ku/2 �˝�˝�

�
;

˝� D k� B� � kB ��; (1.4.27)

respectively, with QA� D h��A� for any 4-vector A�.
The wave equation for MHD waves follows from @L.2/=@��

� D 0 with L.2/ given
by (1.4.27). The resulting equation is of the form

Q� ���� D 0; Q� �� D h�˛h�ˇ�˛ˇ.k; u/; (1.4.28)

� �� D
�
�
�
�c2 C P C E � B�B�

�0



.ku/2 C .kB/2

�0

�
g�� � .ku/2

�0
B�B�

�
�
�P � B�B�

�0



k�k� � kB

�0
.k�B� C k�B�/; (1.4.29)

with B�B� D �jBj2.
There are only three independent (orthogonal to u) components of ��. A set of

basis vectors that span the 3-dimensional space, orthogonal to u�, consists of the
direction of the magnetic field, b�, the component of the wave 4-vector orthogonal
to both the magnetic field and the fluid velocity, 
�? / k� � ku u� C kb b�, and
the direction orthogonal to these, a� D �����u�b�
�? D f �

�

�?. The perpendicular

and parallel components of k are introduced by writing k? D �k
?, kz D �kb,
so that one has k� D ku u� C k?
�? C kzb

�, and g�� D u�u� � 

�

?
�? � a�a� �
b�b� . Equation (1.4.28) may be written as three simultaneous equations for the
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components �? D ��
?, �a D ��a, �b D ��b. The matrix form of these
equations is 0

@
A 0 B

0 D 0

B 0 C

1
A
0
@
�?
�a

�b

1
A D 0; (1.4.30)

with the matrix components given by

D D .�c2 C E C P C jBj2=�0/.ku/2 � k2z jBj2=�0;
A D .�c2 C E C P C jBj2=�0/.ku/2 � �Pk2? � jkj2jBj2=�0;
B D ��P k?kz; C D .�c2 C E C P/.ku/2 � �P k2z ; (1.4.31)

with � D @.lnP/=@.ln �/ for adiabatic changes. The resulting dispersion equation
for relativistic MHD is

D.AC � B2/ D 0: (1.4.32)

The dispersion Eq. (1.4.32) factorizes into D D 0, which gives the dispersion
relation for the Alfvén mode, and AC � B2 D 0, which has two solutions
corresponding to the fast and slow magnetoacoustic modes.

Alfvén and Sound Speeds

It is convenient to define the Alfvén speed and the (adiabatic) sound speed by

v2A D jBj2
�0.�C E=c2 C P=c2/

; c2s D �P

�C E=c2 C P=c2
: (1.4.33)

The dispersion relation for the Alfvén (A) mode becomes

!A D jkzjvA
.1C v2A=c

2/1=2
; v2	 D v2A cos2 �

1C v2A=c
2
; (1.4.34)

where v	 D !=jkj is the phase speed. The fluid displacement in Alfvén waves is
along a�. The dispersion equation for the fast and slow modes is

�
1C v2A

c2



!4�

��
1Cv2A

c2



c2s k

2
z �c2s k2?�v2Ajkj2

�
!2Cc2s v2Ajkj2k2z D 0: (1.4.35)

Solving for the phase speed, the dispersion relations for the two modes are of the
form v2	 D v2˙, with
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v2˙ D 1

2.1C v2A=c
2/

(
v2A C c2s C v2Ac

2
s

c2
cos2 �

˙
"�
v2A � c2s � v2Ac

2
s

c2
cos2 �


2
C 4c2s v

2
A sin2 �

#1=2 )
: (1.4.36)

The solution for the fluid displacement in the two modes is

�
�

˙ / sin ˙
�? C cos ˙b�; (1.4.37)

tan ˙ D v2˙ � c2s cos2 �

c2s sin � cos �
D c2s sin � cos �

.1C v2A=c
2/v2˙ � v2A � c2s sin2 �

: (1.4.38)

For either a very low density or a very strong magnetic field, satisfying
jBj2=�0 	 �c2 C E C P , the conventional Alfvén speed exceeds the speed of
light, vA 	 c, and the MHD speed becomes vA=.1 C v2A=c

2/1=2. At sufficiently
high (relativistic) temperature, the adiabatic index is � D 4=3, the pressure satisfies
P D E=3 	 �c2, implying that the sound speed approaches the limit cs ! c=

p
3.

1.5 Quantum Fluid Theory

A fluid approach to quantum plasmas, referred to here as quantum fluid theory
(QFT), has generated an extensive literature since about 2000 [2, 12, 18]. QFT may
be derived from moments of a kinetic equation, with the Vlasov equation replaced
by an appropriate quantum counterpart. Although a derivation of fluid equations
from the Dirac equation had been developed in the 1950s by Takabayasi [28], the
later development of QFT started from simpler assumptions. In its simplest form
(nonrelativistic, spinless, unmagnetized and longitudinal) the approach is to take
moments of the Wigner-Moyal equations that describe such a quantum system. The
subsequent extension of QFT involved generalizing it to include other effects in a
piecemeal fashion.

1.5.1 Early QFT Theories

It was pointed out by Bohm [6], that a fluid-like description was implicit in
alternative interpretations of Schrödinger’s theory, discussed by de Broglie and
Madelung in 1926. Madelung [17] wrote the wavefunction in the form

 .x; t/ D A.x; t/ expŒiS.x; t/=„�; n.x; t/ D ŒA.x; t/�2; p.x; t/ D rS.x; t/;
(1.5.1)
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whereA and S are real functions. The Madelung equations are a continuity equation
for n.x; t/, which may be interpreted as a probability density for the electrons, and
a Hamiltonian-Jacobi-like equation for S.x; t/, which may be reinterpreted as an
equation of motion for the fluid momentum p.x; t/. (Madelung’s equations are
sometimes regarded as equivalent to Schrödinger’s equation, but this seems not to
be the case [31].) In QFT, Madelung’s equations become the equation of continuity

�
@

@t
C v.x; t/ � r

�
n.x; t/ D 0; (1.5.2)

with v D p=m, and the equation of motion

�
@

@t
C v.x; t/ � r

�
p.x; t/ D er˚.x; t/C „2

2me

r
�r2A.x; t/

A.x; t/



; (1.5.3)

with A.x; t/ D Œn.x; t/�1=2. The final term in (1.5.3), referred to as the Bohm term
in QFT, is an intrinsically quantum mechanical term that describes the effect of
quantum mechanical diffusion and tunneling.

The QFT Eqs. (1.5.2) and (1.5.3) can be derived from moments of kinetic
equations that include quantum effects. A quantum counterpart of the classical
distribution function is the Wigner function, which satisfies a kinetic equation
similar to the Boltzmann equation, re-interpreted as the Vlasov equation in plasma
kinetic theory. The Wigner function is defined in terms of the outer product of the
Schrödinger wavefunction and its complex conjugate, and it includes neither spin
nor relativistic effects. In the generalization to Dirac’s theory, the outer product of
the wave function and its adjoint is a 4 � 4 Dirac matrix, referred to as the Wigner
matrix in � 8.4.2 of volume 1. This generalization leads to substantial increase in
algebraic complexity. Existing versions of QFT that include spin and/or relativistic
effects are based on various simplifying approximations.

Wigner-Moyal Equations

The Wigner function is defined in � 8.4 of volume 1. Let  .x; t/ be the one-
dimensional wavefunction satisfying the one-dimensional Schrödinger equation.
The Wigner function is defined by (ordinary units)

f .p;x; t/ D
Z
d3y eip�y=„  

�
x � 1

2
y ; t

�
 � �x C 1

2
y ; t

�
: (1.5.4)

The notation used for the Wigner function, f .p;x; t/ in (1.5.4), is the same as for
the classical distribution function, but the interpretation is different. One cannot
interpret the Wigner function as a probability distribution, as is the case for its
classical counterpart, in particular because it can be negative. The wavefunction and
its adjoint in (1.5.4) satisfy the Schrödinger equation and its adjoint, respectively.
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For the case of an electron in a longitudinal field, described by an electrostatic
potential ˚.x; t/, the wavefunction satisfies (ordinary units)

� i„ @
@t
 .x; t/ D � „2

2me

r2 .x; t/ � e˚.x; t/ .x; t/: (1.5.5)

The Wigner function satisfies (ordinary units)

�
@

@t
C v � r



f .p;x; t/ D � i e„

Z
d3p0d3y
.2
„/3 f .p0;x; t/e.p�p0/�y=„

� �˚.x � 1
2
y; t/ � ˚.x C 1

2
y ; t/

�
; (1.5.6)

with Poisson’s equation identified as

r2˚.x; t/ D e

"0

�Z
d3p

.2
„/3 f .p;x; t/ � n0

�
; (1.5.7)

where n0 is a constant positive background charge. Equations (1.5.6) and (1.5.7) are
sometimes referred to a the Wigner-Moyal equations. The QFT equations may be
derived by taking moments of (1.5.6).

A simple example of the implications of Eqs. (1.5.6) and (1.5.7) follows by
linearizing and Fourier transforming them, and then solving for the dispersion
relation for longitudinal waves. For any isotropic distribution this gives (ordinary
units)

!2 D !2p C jkj2hv2i C „2jkj4=2m2
e; (1.5.8)

with hv2i D 3V 2
e for a Maxwellian distribution and hv2i D 3v2F =5 for a completely

degenerate electron distribution. The final term in (1.5.8) arises from the Bohm
term. This term has an obvious interpretation in terms of the quantum recoil. This
implies a relation between quantum mechanical diffusion in coordinate space and
the quantum recoil in momentum space [20].

1.5.2 Generalizations of QFT

The form of QFT outlined above applies only to nonrelativistic plasmas and longitu-
dinal fields. As already mentioned, the generalization to include relativistic effects
is discussed briefly in � 8.4 of volume 1, with the Wigner function generalized to
a Wigner matrix whose evolution is determined by Dirac’s equation in place of
Schrödinger’s equation. The derivation of quantum fluid equations from relativistic
quantum theory [28] has become of renewed interest more recently [7, 9, 25].
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1.5.3 Quasi-classical Models for Spin

The effect of the spin of the electron in a magnetic field has been included in
QFT using several different quasi-classical approaches. In the simplest approach,
the magnetic moment of the electron is identified as m D g�Bs, with (SI units)

�B D e„
2m

D 9:274 � 10�24 J T�1; g D 2:00232; (1.5.9)

where �B is the Bohr magneton, and the gyromagnetic ratio, g, differs from 2 due
to radiative corrections in QED. For an electron at rest, a classical form for the
equation of motion of the spin is

ds

dt
D ge

2me

s � B: (1.5.10)

A quasi-classical way of including spin dependence in a kinetic theory [8, 23] is
based on an earlier theory in a different context [10,14]: generalize phase space from
the 6-dimensional x–p space to a 9-dimensional x–p–s space (the restriction jsj D 1

formally reduces the dimensionality to 8), and introduce a distribution function,
f .x;p; s/, in this space. The Vlasov equation is then generalized to include the
evolution of the spin, described by (1.5.10) in the simplest approximation.

Generalization of QFT to include the magnetic field leads to quantum MHD
theory. The generalization of (1.5.3) involves including the Lorentz force and the
force that results from the gradient of the energy associated with the magnetic
moment. This gives

�
@

@t
C v � r



p D �e .E C v � B/Cr.�Bs �B/C „2

2m
r
 

r2n
1=2
e

n
1=2
e

!
; (1.5.11)

where arguments .x; t/ are omitted. The inclusion of the spin in (1.5.11) is not
rigorously justified. The use of fluid theory to describe a (classical or quantum)
plasma imposes an intrinsic limitation that cannot be avoided in the magnetized
case: the spiraling motion of particles cannot be taken into account. Magnetized
fluid theory is reproduced by kinetic theory only when the gyroradii of the particles
are assumed negligibly small. The gyroradius is a classical concept, and the quantum
counterpart of the small gyroradius limit has not been identified in the context of
QFT. (The relevant limit is referred to as the small-x approximation in � 9.4.2.)

Covariant Model for Spin: BMT Equation

A covariant generalization of the equation of motion (1.5.10) for the spin leads to
the Bargmann-Michel-Telegdi (BMT) equation [5]. The spin vector, s, is interpreted
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as the space components of a 4-vector in the frame in which the electron is at rest.
Writing s� D Œs0; s� in an arbitrary frame, one assumes s0 D 0 in the rest frame,
and then su D 0 in the rest frame implies �.s0 � s � v/ D 0, and hence s0 D s � v

in an arbitrary frame. For an accelerated particle, in its instantaneous rest frame,
one has ds0=dt D s � dv=dt , and together with (1.5.10) this determines ds�=dt in
the instantaneous rest frame. It is straightforward to rewrite the resulting equation
in a covariant form. Assuming an equation of motion that omits the final two terms
in (1.5.11), this becomes the BMT equation

ds�

d�
D � e

me

�
1
2
gF ��s� C �

1
2
g � 1

�
s˛F

˛ˇuˇu�
�
;

du�

d�
D � e

me

F ��u�;

(1.5.12)

with d� D dt=� , where � is the proper time. In this model, the spin does not affect
the dynamics, in the sense that there is no term corresponding to the force associated
with the gradient of the magnetic energy, � 1

2
g�Bs � B.

An alternative covariant form of the magnetic moment is in terms of the second
rank 4-tensor

m�� D � 1
2
g�B�

��˛ˇs˛uˇ: (1.5.13)

In the rest frame, uˇ D Œ1; 0�, in the case where the spin is along the direction of
B, assumed to be the 3-axis, one has m12 D �m21 D 1

2
g�Bs. Equations (1.5.12)

and (1.5.13) imply, dm��=d� D 0, and hence that the magnetic moment in this
sense is conserved. This conservation law also applies when the radiative correction
g � 2 ¤ 0 is included.

1.5.4 Spin-Dependent Cold Plasma Response

The classical covariant form of the response of a cold electron gas is calculated
in � 1.2, and use of (1.5.12) and (1.5.13) facilitates generalizing that calculation of
the response tensor to include the contribution due to the magnetic moments of the
electrons in a magnetized electron gas. For simplicity the radiative correction is
neglected by setting g D 2.

The 4-magnetization of the electron gas is M�� D nem
�� . The assumption that

the electron gas is magnetized implies that there is a nonzero mean spin, denoted
Ns�. Let the average magnetization be M�� D ne Nm�� , with Nm�� D �B�

��˛ˇ Ns˛ Nuˇ,
where an overbar denotes an average value. In the rest frame of the cold electron
gas, one has Nu� D Œ1; 0�, Ns� D Œ0; s�, implying a 3-magnetization M D �Bne Ns.

The linear response tensor associated with the perturbation of the magnetic
moments of the electrons can be evaluated in terms of the linear perturba-
tion, M.1/��.k/, in the magnetization. The associated 4-current is J .1/�.k/ D
�ik�M .1/��.k/, and writing this in the form

� ik�M
.1/��.k/ D ˘��

m .k/A�.k/; (1.5.14)
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defines the relevant contribution ˘��
m .k/ to the response tensor. In the model used

here, the spin does not affect the dynamics, and hence there is assumed to be no
perturbation in ne . The linear perturbation in the magnetization is

M.1/��.k/ D ��Bne���˛ˇ
h
s.1/˛ .k/Nuˇ C Ns˛u.1/ˇ .k/

i
: (1.5.15)

The perturbation in the 4-velocity is given by (1.2.15), and for electrons this
becomes

u.1/�.k/ D e

mek Nu
�
k Nu ���.k Nu/� k��

��.k Nu/Nu��A�.k/; (1.5.16)

with, from (1.2.19) for electrons,

���.!/ D g
��

k C !

!2 �˝2
e

�
!g

��

? � i˝ef
��
�
: (1.5.17)

The analogous perturbation in the spin 4-vector follows from (1.5.12), with g D 2

here:

s.1/�.k/ D e

mek Nu
�
k Ns ���.k Nu/ � k����.k Nu/Ns��A�.k/: (1.5.18)

Explicit evaluation gives

˘��
m .k/ D � iene

me k Nuk��
��
˛ˇ

n
Œk Ns �˛�.k Nu/� k��

˛� .k Nu/Ns��Nuˇ

CŒk Nu �ˇ�.k Nu/� k��
ˇ� .k Nu/Nu��Ns˛

o
; (1.5.19)

with ��� given by (1.5.17).
The covariant form (1.5.19) applies to a collection of electrons at rest in the

frame moving with 4-velocity Nu�. As in the case of the cold plasma response, one
can reinterpret (1.5.19) in a way that allows one to include an arbitrary distribution
of particles in parallel velocity ˇ. One replaces Nu by u, with u� D �Œ1; 0; 0; ˇ�,
� D 1=.1 � ˇ2/1=2, and replaces ne by the differential proper number density,
dˇ g�.ˇ/=� , where g�.ˇ/ is the distribution function for electrons, � D 1, or
positrons, � D �1. After integrating over ˇ, this generalization of (1.5.19) gives the
magnetic moment contribution to the response tensor for the distribution of electrons
plus positrons.

This model does not include the spiraling motion of the electrons, and the
response tensor (1.5.19) is valid only in the small-gyroradius limit.

Spin-Dependent Response in the Rest Frame

The spin-dependent contribution (1.5.19) to the response tensor simplifies consid-
erably in the rest frame of the (cold) electron gas, when one has Nu� D Œ1; 0�,
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Ns� D Œ0; Nsb�, where b D .0; 0; 1/ is a unit vector along the magnetic field. One
then has k Nu D !, k Ns D �kz Ns, and the spin-dependent contribution to the response
tensor is proportional to the magnetizationM D �Bne Ns.

For cold electrons in their rest frame, (1.5.20) reduces to [21]

˘��
m .k/ D � eM

me.!2 �˝2
e /

0
BBBB@

k2?˝e !k?˝e i!2k? 0

!k?˝e .!2 � k2z /˝e i.!2 � k2z /! k?kz˝e

�i!2k? �i.!2 � k2z /! .!
2 � k2z /˝e �i!k?kz

0 k?kz˝e i!k?kz �k2?˝e

1
CCCCA
:

(1.5.20)

The spin-dependent contribution to the dielectric tensor is (ordinary units)

ŒKm�
i
j .k/ D ˝mc

2

!2.!2 �˝2
e /

0
B@
.!2=c2 � k2z /˝e i.!2=c2 � k2z /! k?kz˝e

�i.!2=c2 � k2z /! .!
2=c2 � k2z /˝e �ik?kz!

k?kz˝e ik?kz! �k2?˝e

1
CA ;

(1.5.21)

where the frequency associated with the magnetization is

˝m D �0M

B
˝e D „Ns!2p

mec2
: (1.5.22)

The ratio ˝m=!p is small except in dense, strongly magnetized plasmas, where the
plasmon energy, „!p , is a significant fraction of the rest energy, mec

2, and Ns is of
order unity.

The derivation of the response tensor (1.5.20) involves two different assumptions:
the BMT equation for the spin evolution and the cold-plasma approximation.
An analogous result derived using a nonrelativistic theory [22] differs from (1.5.20)
in that !2=c2 � k2z is replaced by �k2z . A similar result has been derived for a
special case using kinetic theory [23]. The validity of the quasi-classical approach
for including the spin in the dispersion is questioned in � 9.6, where it is argued that
a rigorous theory does not reproduce the result (1.5.20) in any obvious way.
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Chapter 2
Response Tensors for Magnetized Plasmas

The generalization of the covariant classical kinetic theory of plasma responses
from an unmagnetized to a magnetized plasma involves a considerable increase in
algebraic complexity. As in the unmagnetized case, two different methods of calcu-
lation are available and both are useful: the forward-scattering and Vlasov methods.
In the forward-scattering method, one includes a perturbing electromagnetic field,
A�.k/, in the equation of motion for a single particle, and expands the single-
particle current in powers of A�.k/. On averaging this current over a distribution
of particles, the result is interpreted as the weak turbulence expansion, allowing
one to identify the linear and nonlinear response tensors. In the Vlasov method, the
perturbation due to A�.k/ is included in the Vlasov equation, and the distribution
function is expanded in A�.k/, with the nth order term used to calculate the nth
order current. The linear (n D 1) nonlinear (n > 1) terms determine the linear and
nonlinear response tensors. A third method is used in the unmagnetized case, based
on combining a fluid (cold plasma) approach with a Lorentz transformation; this
method does not generalize to the arbitrary magnetized case because it cannot be
used to include the effect of the gyration of particles.

Convenient general forms for the response tensors are obtained by expanding
in Bessel functions. The response may then be interpreted in terms of dispersive
contributions due to gyroresonant interactions. After expanding in Bessel functions,
the forward-scattering and Vlasov methods give alternative expressions, related by
a partial integration and sum rules for the Bessel functions. An alternative approach
for a relativistic thermal (Jüttner) distribution is to evaluate the linear response
tensor using a procedure due to Trubnikov that involves no expansion in Bessel
functions.

D. Melrose, Quantum Plasmadynamics: Magnetized Plasmas, Lecture Notes
in Physics 854, DOI 10.1007/978-1-4614-4045-1 2,
© Springer Science+Business Media New York 2013
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42 2 Response Tensors for Magnetized Plasmas

2.1 Orbit of a Spiraling Charge

In a uniform magnetostatic field, the unperturbed orbit of a charged particle is a
spiraling motion about the magnetic field lines. By solving the covariant form of
Newton’s equation of motion, one determines the 4-velocity of a particle at proper
time � in terms of its 4-velocity at an arbitrary initial proper time � D 0. The
relation between these two 4-vectors defines a tensor that depends on � . The Fourier
transform of this tensor, denoted ���.!/, characterizes the linear response of a
spiraling charge. This tensor is used in the calculation of the linear response tensor
for a plasma by both the forward-scattering method and the Vlasov method. The
4-current due to the charge is expanded in powers of a perturbing electromagnetic
field in � 2.2.

2.1.1 Orbit of a Spiraling Charge

In the absence of the perturbing electromagnetic field, the classical equation of
motion for a particle with charge q and mass m in a static electromagnetic field
F
��
0 is

du�.�/

d�
D q

m
F
��
0 u�.�/; (2.1.1)

where � is the proper time of the particle. For a magnetostatic field, F ��
0 D

Bf �� , (2.1.1) becomes

du�.�/

d�
D ��˝0f

��u�.�/; � D � q

jqj ; ˝0 D jqjB
m

; (2.1.2)

where � is positive for electrons and negative for positively charged particles. (The
choice to write the sign of the charge as �� is made to be consistent with the notation
used in a QED treatment.) The frequency ˝0 is the nonrelativistic gyrofrequency,
also called the cyclotron frequency.

In solving (2.1.2) one is free to choose a frame in which the magnetic field is
along the 3-axis and such that the initial 4-velocity, u�.0/ D u�0 , corresponds to

u�0 D .�; �v? cos	0; ��v? sin 	0; �vz/; (2.1.3)

where 	0 is an initial gyrophase. For a single particle one is free to choose the initial
conditions such that 	0 D 0, and the 3-velocity in the 1–3 plane. The spiraling
motion is in a right-hand screw sense, relative to the magnetic field, for electrons
(� D 1) and other negative charges, and left hand for positive charges (� D �1). All
of � , v?, vz and p? D �mv?, pz D �mvz are constants of the motion.

Let the solution for the orbit be written in the form

X�.�/ D x
�
0 C t��.�/u0�; (2.1.4)
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where x0 is a constant 4-vector. It is convenient to consider the motion in space-time
projected onto two 2D-subspaces, denoted as the k- and ?-subspaces. These
correspond to the 0–3 plane and the 1–2 planes, respectively. The k-motion is
constant rectilinear motion, which corresponds to X

�

k .�/ D x
�

0k C u�
0k� , with

u�
0k D .�; 0; 0; �vz/ a constant 4-vector. Hence, on writing t��.�/ D t

��

k .�/Ct��? .�/,

one identifies t��k .�/ D g
��

k � .
The equation of motion (2.1.1) projected onto the ?-space, that is, the 1–2 plane,

leads to a differential equation for t��? .�/:

Rt��? .�/ D ��˝0f
�
� Pt��? .�/; (2.1.5)

where a dot denotes differentiation with respect to � . The solution that satisfies the
initial conditions is Pt��? .�/ D g

��

? cos˝0� � �f �� sin˝0� . The derivative of (2.1.4)
with respect to � then has the explicit form

u�.�/ D Pt��.�/u0�; Pt��.�/ D g
��

k C g
��

? cos˝0� � �f �� sin˝0�: (2.1.6)

Integration gives

t��.�/ D g
��

k � C g
��

?
sin˝0�

˝0

C �f �� cos˝0�

˝0

: (2.1.7)

The solution for the 4-velocity at proper time � is

u�.�/ D .�; �v? cos.	0 C˝0�/; ��v? sin.	0 C˝0�/; �vz/: (2.1.8)

The solution for the orbit is

X�.�/ D x
�
0 C .��; R sin.	0 C˝0�/;��R cos.	0 C˝0�/; �vz�/; (2.1.9)

where R D �v?=˝0 is the gyroradius. The handedness of the spiraling motion is
specified by the sign �, and is right-hand for � D 1 (a negative charge).

Properties of t��.�/, Pt��.�/

The tensors t��.�/ and Pt��.�/ characterize the spiraling motion of a charge in
a magnetic field. The tensor Pt��.�/ satisfies the differential equation (2.1.5).
Integrating (2.1.5) gives

Pt��.�/ D g
��

k � �˝0f
�
� t
��.�/; (2.1.10)

with the initial conditions,

Pt��.0/ D g��; t��.0/ D �f ��=˝0; (2.1.11)



44 2 Response Tensors for Magnetized Plasmas

implied by (2.1.6) and (2.1.7), respectively. The tensor Pt��.�/ also satisfies

Pt��.��/ D Pt��.�/; Pt��.�1/Pt��.�2/ D Pt��.�1 C �2/: (2.1.12)

The contravariant components of tensor t��.�/ are

t��.�/ D 1

˝0

0
BB@

˝0� 0 0 0

0 � sin˝0� �� cos˝0� 0

0 � cos˝0� � sin˝0� 0

0 0 0 �˝0�

1
CCA : (2.1.13)

The contravariant components of Pt��.�/,

Pt��.�/ D

0
BB@

1 0 0 0

0 � cos˝0� � sin˝0� 0

0 �� sin˝0� � cos˝0� 0

0 0 0 �1

1
CCA ; (2.1.14)

follow by differentiation of (2.1.13).

2.1.2 Characteristic Response Due to a Spiraling Charge

The response of a spiraling charge is characterized by the Fourier transform of
Pt��.�/. Specifically, one may regard Pt��.�/ as a causal function, which vanishes
for � < 0, so that its Fourier transform is defined by writing

Z 1

0

d� ei!� Pt��.�/ D i

!
���.!/: (2.1.15)

The integral reproduces the tensor ���.!/, given by (1.2.19), viz.

���.!/ D g
��

k C !

!2 �˝2
0

�
!g

��

? � i�˝0f
��
�
: (2.1.16)

A matrix representation of ���.!/ is given by (1.2.20). Being a causal function, one
is to interpret the poles, at ! D 0;˙˝0, in terms of the Landau prescription: give !
an infinitesimal imaginary part, ! ! ! C i0, and use the Plemelj formula

1

! � !0 C i0
D ℘ 1

! � !0
� i
 ı.! � !0/; (2.1.17)

where℘ denotes the Cauchy principal value.
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The 4-current density, J�sp.x/ say, for a single charge q spiraling in a magnetic
field is

J�sp.x/ D q

Z
d� u�.�/ ı4

�
x �X.�/�: (2.1.18)

The Fourier transform of (2.1.18) is

J�sp.k/ D
Z
d4x J �sp.x/ e

ikx D q

Z
d� u�.�/ eikX.�/: (2.1.19)

The explicit forms (2.1.6) for u�.�/ and (2.1.4) for X�.�/ are to be inserted
into (2.1.19).

On inserting the expression (2.1.4) for X�.�/, the exponent in (2.1.19) becomes

kX.�/ D kx0 C .ku0/k� C �
k�t

��.�/u0�
�
?; (2.1.20)

where the notation .ab/k D g
��

k a�b� is used. Let the wave 3-vector be written in
cylindrical polar coordinates, so that the 4-vector has components

k� D .!; k? cos ; k? sin ; kz/: (2.1.21)

Then (2.1.20) contains the term

�
k�t

��.�/u0�
�
? D �k?R sin.	0 C˝0� � � /; (2.1.22)

with R D �v?=˝0 D p?=jqjB the gyroradius of the particle. To perform the �-
integral in (2.1.19), one first expands in Bessel functions in such a way that all the
dependence on � is in exponents.

2.1.3 Expansion in Bessel Functions

The expansion in Bessel functions is based on the generating function

eiz sin	 D
1X

aD�1
eia	Jn.z/: (2.1.23)

The expansions needed here are (2.1.23) and

�
cos	
i sin 	



eiz sin	 D

1X
aD�1

eia	

 
.a=z/Ja.z/

J 0
a.z/

!
; (2.1.24)

which follow from (2.1.23) by differentiating with respect to 	, z, respectively. One
may also obtain (2.1.24) from (2.1.23) by using the recursion relations
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Ja�1.z/C JaC1.z/ D 2
a

z
Ja.z/; (2.1.25)

Ja�1.z/ � JaC1.z/ D 2J 0
a.z/: (2.1.26)

The actual expansion required is for the integrand in (2.1.19), and can be written

u�.�/eikX.�/ D eikx0
1X

aD�1
eis� eiŒ.ku0/k�a˝0��U �.a; k/: (2.1.27)

The 4-vectorU�.a; k/ plays an important role in a covariant theory of the response.
It has no standard name, and could be referred to as the Fourier-Bessel components
of the 4-velocity. Its explicit form is

U�.a; k/ D �
�Ja.k?R/; �V .a; k/

�
; (2.1.28)

with the 3-velocity components given by

V .a; k/ D
�
1

2
v?
�
e�i� Ja�1.k?R/C ei� JaC1.k?R/

�
;

1

2
i�v?

�
e�i� Ja�1.k?R/� ei� JaC1.k?R/

�
; vzJa.k?R/



:

(2.1.29)

The 4-vector (2.1.28) satisfies the identity

k�U
�.a; k/ D �

.ku/k � a˝0

�
Ja.k?R/: (2.1.30)

After expanding in Bessel functions, all the dependence on � in (2.1.19) is in
exponents, such that the �-integral is trivial, giving a sum of terms involving ı-
functions with argument .ku/k � a˝0. The final result for the single particle 4-
current (2.1.19) is

J�sp.k/ D qeikx0
1X

aD�1
eis� U �.a; k/ 2
ı

�
.ku/k � a˝0

�
: (2.1.31)

The identity (2.1.30) ensures that the charge-continuity condition, k�J
�
sp.k/ D 0, is

satisfied.

2.1.4 Gyroresonance Condition

The gyroresonance condition, implied by the ı-function in (2.1.31), is

.ku/k � a˝0 D 0; "! � ajqjB � pzkz D 0; (2.1.32)
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with p� D mu�, p0 D ", p3 D pz. The condition (2.1.32) is also sometimes
referred to as the Doppler condition.

When viewed as an equation for pz for given a; !; kz, (2.1.32) has the disadvan-
tage that it contains the square root " D .m2 C p2? C p2z /

1=2. The gyroresonance
condition in (2.1.32) may be rationalized, to remove the square root, by multiplying
by "! C ajqjB C pzkz. This gives

�
!2 � k2z

�
p2z � 2ajqjBkzpz C �

m2 C p2?
�
!2 � a2q2B2 D 0: (2.1.33)

In p?-pz space, (2.1.33) is a conic section, being an ellipse with minor axis along
the p?-axis for !2 � k2z > 0, and a hyperbola for !2 � k2z < 0. Only one arm of the
hyperbola is physical for !2 � k2z > 0, with the spurious solution being introduced
by the rationalization process.

One may also regard (2.1.33) as a quadratic equation for pz, and solve it for the
two solutions pz D pz˙. These resonant momenta are

pz˙ D kzfa ˙ !ga; fa D ajqjB
!2 � k2z

; g2a D f 2
a � "2?

!2 � k2z
; (2.1.34)

with "2? D m2 C p2?. The corresponding resonant energies, "˙ D ."2? C p2z˙/1=2,
are

"˙ D !fa ˙ kzga; (2.1.35)

where the sign of the square root is chosen such that one has "˙! � ajqjB �
pz˙kzD0. The physically allowed region for the resonance corresponds to g2a > 0,
and "˙ � m.

An alternative way of factoring the gyroresonance condition involves replacing
the momentum components p?; pz by "?; t , defined by

"2? D m2 C p2?; pz D "?
2t

1 � t2 ; " D "?
1C t2

1 � t2
; (2.1.36)

with �1 < t < 1. One has

"! � pzkz � ajqjB D ."?! C ajqjB/ .t � tC/.t � t�/
1 � t2

; (2.1.37)

with the resonant values given by

t˙ D "? kz ˙ .!2 � k2z /ga
"?! C ajqjB ; pz˙ D "?

2t˙
1 � t2˙

; "˙ D "?
1C t2˙
1 � t2˙

: (2.1.38)

The physically allowed solutions are those with t˙ real and in the range with �1 <
t˙ < 1.
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2.2 Perturbation Expansions

On including a fluctuating electromagnetic field, described by A�.k/, the weak
turbulence expansion involves expanding various relevant quantities in powers of
A�.k/. These expansions are discussed in this section.

2.2.1 Perturbation Expansion of the 4-Current

The equation of motion for a charge can be written

du�.�/

d�
D q

m
F
��
0 u�.�/C S�.�/; (2.2.1)

where the perturbing electromagnetic field is included in

S�.�/ D iq

m

Z
d4k1

.2
/4
e�ik1X.�/k1u.�/G��

�
k1; u.�/

�
A�.k1/; (2.2.2)

withG��.k; u/ D g�� �k�u�=ku. The tensor Pt��.�/ plays the role of an integrating
factor in the sense that it allows one to integrate (2.2.1) to find

u�.�/ D Pt��.�/u0� C
Z �

0

d� 0 Pt��.� � � 0/S�.� 0/;

X�.�/ D x
�
0 C t��.�/u0� C

Z �

d� 00
Z � 00

d� 0 Pt��.� 00 � � 0/S�.� 0/; (2.2.3)

which follow by integrating once and twice, respectively.
A perturbation expansion of the orbit in powers of A.k/ may be written

X�.�/ D
X
nD0

X.n/�.�/; u�.�/ D
X
nD0

u.n/�.�/; (2.2.4)

where u.n/�.�/ D dX.n/�.�/=d� is of nth order in A.k/. The expansion may be
made by first inserting the expansions (2.2.4) into the expression (2.2.2) for S�.�/,
and expanding it in the same form as (2.2.4):

S�.�/ D
X
nD1

S.n/�.�/; (2.2.5)

which has no zeroth order term. The nth order terms follow from

u.n/�.�/ D
Z �

d� 0 Pt��.� � � 0/S.n/� .� 0/;

X.n/�.�/ D
Z �

d� 00
Z � 00

d� 0 Pt��.� 00 � � 0/S.n/� .� 0/: (2.2.6)
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The perturbation expansion involves an iteration. The first order term S.1/�.�/

follows by inserting the zeroth order solutions (2.1.8) and (2.1.9) into the integrand
of (2.2.2). The first order terms u.1/�.�/ and X.1/�.�/ follow from n D 1 in (2.2.6).
These terms are then used to find S.2/�.�/ by expanding the integrand of (2.2.2),
with the second order terms u.2/�.�/ and X.2/�.�/ given by n D 2 in (2.2.6). In this
way the solution at order n follows from the solutions of order < n.

Expansion of the 4-Current

The expansion of the 4-current leads to an nth order term of the form

J .n/�sp .k/ D q

Z
d� j .n/�.�/ eikX

.0/.�/; (2.2.7)

with X.0/�.�/ identified with the zeroth order orbit (2.1.4). The zeroth order current
is given by (2.1.19), and corresponds to

j .0/�.�/ D Pt��.�/u0�; (2.2.8)

where Pt��.�/ is given by (2.1.6). The first term is

j .1/�.�/ D u.1/�.�/C ikX.1/.�/ u.0/�.�/; (2.2.9)

the second order term is

j .2/�.�/ D u.2/�.�/C ikX.1/.�/ u.1/�.�/C ˚
ikX.1/.�/� 1

2

�
kX.1/.�/

�2�
u.0/�.�/; (2.2.10)

and so on for the higher order currents.

First-Order Current

The first order current follows from (2.2.7) with (2.2.9). Writing u.1/�.�/ D
dX.1/�.�/=d� and partially integrating, the result reduces to

J .1/�sp .k/ D iq

Z
d� ku.0/.�/G˛�

�
k; u.0/.�/

�
X.1/
˛ .�/ eikX

.0/.�/; (2.2.11)

with

ku.�/G��
�
k; u.�/

� D ku.�/ g�� � k�u�.�/: (2.2.12)



50 2 Response Tensors for Magnetized Plasmas

On inserting the first order perturbation in the expression (2.2.11) for the orbit, one
finds

J
.1/�
sp .k/ D �q

2

m

Z
d�

Z �

d� 00
Z � 00

d� 0
Z

d4k1

.2
/4
eiŒkX

.0/.�/�k1X.0/.� 0/�

� Pt˛ˇ.� 00 � � 0/ ku.0/.�/ G˛�
�
k; u.0/.�/

�
k1u

.0/.� 0/Gˇ�
�
k1; u

.0/.� 0/
�
A�.k1/:

(2.2.13)

To carry out the integrals over � , � 0 and � 00 in (2.2.13) one first expands the
integrand in Bessel functions, using (2.1.27), so that all the dependence on proper
time is in exponents. The resulting expression is

J .1/�sp .k/ D
1X

a;a1D�1

Z
d4k1

.2
/4
e�i.k�k1/x0 ei�.a �a1 1/

� G˛�.a; k; u/�˛ˇ
�
.ku/k � a˝0

�
G�ˇ�.a1; k1; u/

� 2
ı�.ku/k � .k1u/k � .a � a1/˝0

�
; (2.2.14)

where ���.!/ is given by (2.1.16), and where the azimuthal angles , 1 are defined
by (2.1.21). The tensor G��.a; k; u/ is given by

G��.a; k; u/ D g��Ja.k?R/� k�U �.a; k/

.ku/k � a˝0

: (2.2.15)

2.2.2 Small-Gyroradius Approximation

An important limiting case in which the foregoing formulae simplify considerably is
the limit of small gyroradii. The argument of the Bessel functions is k?R, and in the
limit R ! 0 one has Ja.0/ D 1 for a D 0 and Ja.0/ D 0 for a ¤ 0. Applying this
approximation to U�.a; k/, as given by (2.1.28), one finds that V .a; k/ has nonzero
contributions only for a D 0;˙1:

V .0; k/ D .0; 0; vz/; V .˙1; k/ D 1
2
v?e�i� .1;˙i�; 0/: (2.2.16)

In this approximation (2.1.28) gives

U�.0; k/ D u�k ; U �.˙1; k/ D 1
2
u?e�i� .0; 1;˙i�; 0/; (2.2.17)

with u�k D �.1; 0; 0; vz/, u? D �v?. In the small gyroradius limit, the cur-
rent (2.1.31) reduces to

J�sp.k/ D qeikx0u�k 2
ıŒ.ku/k
�
; (2.2.18)
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which is equivalent to the current for a charge in constant rectilinear motion. In the
small-gyroradius approximation, the function G��.a; k; u/, defined by (2.2.15), is
nonzero only for a D 0, when it simplifies to G��.0; k; u/ D G��.k; uk/ D g�� �
k�u�k=kuk. The first-order current (2.2.14) then simplifies to

J .1/�sp .k/ D
Z

d4k1

.2
/4
e�i.k�k1/x0

� G˛�.k; uk/�˛ˇ.kuk/Gˇ�.k1; uk/ 2
ı
�
.k � k1/uk

�
A�1.k1/: (2.2.19)

One has

G˛�.k; uk/�˛ˇ.kuk/Gˇ�.k0; uk/ D ���.kuk/

� u�kk˛�
˛�.kuk/C ��ˇ.kuk/k 0̌ u�k

kuk
C k˛k

0̌ �˛ˇ.kuk/u�k u�k
.kuk/2

; (2.2.20)

with k0uk D kuk implied by the ı-function in (2.2.19).

2.3 General Forms for the Linear Response 4-Tensor

The forward-scattering and Vlasov methods are used in this section to derive
general expressions for the response tensor for a magnetized plasma with arbitrary
distribution functions for the particles.

2.3.1 Forward-Scattering Method for a Magnetized Plasma

The derivation of the linear response tensor using the forward-scattering method
involves averaging the first-order, single-particle current over the distribution
of particles. For a magnetized particle the first order, single-particle current is
given by (2.2.13), with the unperturbed orbit given by (2.1.4), viz. X�.�/ D
x
�
0 C t��.�/u0� , where x0 describes the initial conditions and u0 is the initial

4-velocity. The average over a distribution of particles follows by noting that
the distribution F.x0; p0/ represents the number of world lines (one per particle)
threading the 7-dimensional surface d4x0 d4p0=.2
/4d� [1]. Hence, the appropri-
ate average follows by replacing the integral over d� in (2.2.13) by the integral
over d4x0 d4p0=.2
/4 times F.x0; p0/. Assuming a uniform distribution in space
and time implies that F.p0/ does not depend on x0. Then x0 appears only in an
exponential factor expŒi.k�k1/x0�, and the x0-integral gives .2
/4 ı4.k�k1/. The
k1-integral in (2.2.13) is performed over the resulting ı-function, with the implied
identity k�1 D k� being the forward-scattering condition. This leads to an expression
of the form J .1/�.k/ D ˘��.k/A�.k/.
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Using this method one identifies the linear response tensor as

˘��.k/ D �q
2

m

Z
d4p.�/

.2
/4
F.p/

Z �

d� 00
Z � 00

d� 0 exp
�
ik
�
X.�/�X.� 0/

��

� Pt˛ˇ.� 00 � � 0/ ku.�/G˛�
�
k; u.�/

�
ku.� 0/Gˇ�

�
k; u.� 0/

�
; (2.3.1)

where the superscript .0/ on u.�/ is now omitted, with u.�/ given by (2.1.6), viz.
u�.�/ D Pt��.�/u0� , with t��.�/ given by (2.1.7) and where the dot denotes the
derivative with respect to � . Also in (2.3.1) it is noted that the initial value of � is
related to the initial gyrophase, 	0 say, and one is free to choose 	0 D ˝0� and to
write the integral over d4p0 as an integral over d4p.�/. The distribution F.p/ is
assumed independent of gyrophase, and hence of � .

The normalization of F.p/ is to the proper number density, npr,

npr D
Z

d4p

.2
/4
F.p/: (2.3.2)

In terms of the conventional distribution function f .p/ the proper number density
and the number density are given by (ordinary units)

npr D
Z

d3p

.2
„/3� f .p/; n D
Z

d3p

.2
„/3 f .p/; (2.3.3)

respectively. The factor .2
„/3 is included in (2.3.3) to be consistent with the
conventional normalization in quantum statistical mechanics. One has F.p/ /
ı.p2 �m2/ f .p/, with p2 D "2 � p2 and " D p0.

The dependence on proper times in (2.3.1) simplifies after a partial integration:

˘��.k/ D q2

m

Z
d4p.�/

.2
/4
F.p/

Z 1

0

d� exp
�
ik
�
X.�/� X.� � �/��

� T˛ˇ.�/ ku.�/G˛�
�
k; u.�/

�
ku.� � �/Gˇ�

�
k; u.� � �/�; (2.3.4)

where it is convenient to introduce the tensor

T ��.�/ D t��.�/� t��.0/: (2.3.5)

The components of T ��.�/ follow from (2.1.13):

T ��.�/ D 1

˝0

0
BB@

˝0� 0 0 0

0 � sin˝0� �.1 � cos˝0�/ 0

0 ��.1 � cos˝0�/ � sin˝0� 0

0 0 0 �˝0�

1
CCA : (2.3.6)
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The property T ��.�/ D �T ��.��/ allows one to separate the integrand in (2.3.4)
into parts that are even and odd functions of �. These correspond to the hermitian
and antihermitian parts, respectively, of the response tensor. Thus the antihermitian
part of (2.3.4) can be found by replacing the lower limit of the �-integral by �1,
and dividing by 2:

˘A��.k/ D q2

2m

Z
d4p.�/

.2
/4
F.p/

Z 1

�1
d� exp

�
ik
�
X.�/�X.� � �/

��
T˛ˇ.�/

� ku.�/G˛�
�
k; u.�/

�
ku.� � �/Gˇ�

�
k; u.� � �/�: (2.3.7)

The hermitian part is implicit in (2.3.4) and it is not particularly helpful to identify
it explicitly.

2.3.2 Forward-Scattering Form Summed over Gyroharmonics

Further evaluation of the response tensor in the forward-scattering form (2.3.1)
involves expanding in Bessel functions. This enables one to perform the integrals
over � and � (equivalent to gyrophase here) explicitly, and interpret the result
in terms of a sum over gyroresonant contributions. To perform the � 0 and � 00
integrals in (2.3.1) and the �-integral in (2.3.4) one first expands in Bessel functions
using (2.1.27).

The resulting expression for the linear response tensor is

˘��.k/ D �q
2

m

Z
d4p

.2
/4
F.p/

�
1X

aD�1
G˛�.a; k; u/�˛ˇ..ku/k � a˝0/G

�ˇ�.a; k; u/; (2.3.8)

where the subscript 0 on u and p D mu is now redundant, and with G��.a; k; u/
defined by (2.2.15). The 4-vector U�.a; k/ is given by (2.1.28) with (2.1.29), and
���.!/ is given by (2.1.15).

The form (2.3.8) for the linear response tensor is in a concise notation, and
one needs to write it in a more explicit form in order to evaluate it for specific
distributions. One step is to substitute the explicit form (2.2.15) for G�� , giving

˘��.k/ D �q
2

m

Z
d4p

.2
/4
F.p/

1X
aD�1

�
��� J 2a

�U
�k˛�

˛� C ��ˇkˇU
��

.ku/k � a˝0

Ja C k˛�
˛ˇkˇU

�U ��

Œ.ku/k � a˝0�2

�
; (2.3.9)
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where the argument ..ku/k � a˝0/ and .a; k/ of ��� and U�, respectively, are
omitted for simplicity in writing. Substituting the explicit expression (2.1.15) for
��� gives

˘��.k/ D �q
2

m

Z
d4p

.2
/4
F.p/

1X
aD�1



g
��

k J 2a

�k
�

k U
�� C k�kU

�

.ku/k � a˝0

Ja C .k2/kU�U ��

Œ.ku/k � a˝0�2

C Œ.ku/k � a˝0�
2

Œ.ku/k � a˝0�2 �˝2
0

�
g
��

? J 2a � k
�

?U �� C k�?U�

.ku/k � a˝0

Ja C .k2/?U�U ��

Œ.ku/k � a˝0�2

�

� i�˝0Œ.ku/k � a˝0�

Œ.ku/k � a˝0�2 �˝2
0

�
f �� J 2a C k

�
GU

�� � k�GU
�

.ku/k � a˝0

Ja

��
: (2.3.10)

Further separation into components in the k- and ?-subspaces follows by writing

U�.a; k/ D U
�

k .a; k/C U
�

?.a; k/;

U
�

k .a; k/ D Ja.k?R/
.k2/k

�
.ku/kk�k � .kDu/kk�D

�
;

U
�

?.a; k/ D �v?
k?

�
a

k?R
Ja.k?R/ k�? C i� J 0

a.k?R/ k�G
�
; (2.3.11)

where the four basis 4-vectors k�k , k�?, k�G , k�D , defined by (1.1.18), span the
4-dimensional space. Using (2.3.11) and the identities

.k2/kg��k D k
�

k k
�
k � k�Dk�D; .k2/?g��? D k

�

?k
�? C k

�
Gk

�
G; (2.3.12)

with .k2/? D �k2?, allows one to (2.3.10) explicitly in terms of this choice of basis
4-vectors.

Explicit Forms for the Components of ˘ ��.k/

In practice it is convenient to have explicit expressions for the components of the
response tensor.

The components of the response 4-tensor in the forward-scattering form (2.3.10)
may be written

˘��.k/ D �q
2

m

Z
d3p

.2
/3�
f .p/

1X
aD�1

A��.a; k; u/; (2.3.13)

with A�� given explicitly in Table 2.1, and where the relation
R
d4p F.p/=.2
/4 DR

d3p f .p/=.2
/3� is used.
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Table 2.1 The components of A�� D A��.a; k; u/ in (2.3.13), with the
argument of the Bessel functions, Ja D Ja.k?R/, omitted

A00 D
"
.�kzvz C a˝0/

2 � �2k2z

Œ.ku/k � a˝0�2
� �2k2

?

Œ.ku/k � a˝0�2 �˝2
0

#
J 2a

A01 D
�
!.�kzvz C a˝0/� �k2z

Œ.ku/k � a˝0�2
a˝0

k?

� �2k?.! � kzvz/

Œ.ku/k � a˝0�2 �˝2
0

�
J 2a

A02 D �i�
�
�kz.!vz � kz/C !a˝0

Œ.ku/k � a˝0�2
�v? J 0

aJa

� �k?

Œ.ku/k � a˝0�2 �˝2
0

.˝0Ja C �k?v?J
0

a/Ja

�

A03 D
�
�.!vz C kz/a˝0 � �2!kz.1� v2z /

Œ.ku/k � a˝0�2
� �2vzk

2
?

Œ.ku/k � a˝0�2 �˝2
0

�
J 2a

A11 D
"

.k2/k

Œ.ku/k � a˝0�2
a2˝2

0

k2
?

� .ku/2
k

Œ.ku/k � a˝0�2 �˝2
0

#
J 2a

A22 D �J 2a C .k2/k

Œ.ku/k � a˝0�2
.�v? J 0

a/
2 � .˝0Ja C �k?v?J

0

a/
2

Œ.ku/k � a˝0�2 �˝2
0

A33 D
�
� .�! � a˝0/

2 � .!�vz/
2

Œ.ku/k � a˝0�2
� .k?�vz/

2

Œ.ku/k � a˝0�2 �˝2
0

�
J 2a

A12 D �i�
�

!2 � k2z

Œ.ku/k � a˝0�2
a˝0

k?

Ja �v?J
0

a

� .ku/k
Œ.ku/k � a˝0�2 �˝2

0

.˝0Ja C �k?v?J
0

a/Ja

�

A13 D
�
�!.!vz � kz/C kza˝0

Œ.ku/k � a˝0�2
a˝0

k?

� �k?vz .ku/k
Œ.ku/k � a˝0�2 �˝2

0

�
J 2a

A23 D i�

�
�!.!vz � kz/C kza˝0

Œ.ku/k � a˝0�2
�v?J

0

a

� k?�vz

Œ.ku/k � a˝0�2 �˝2
0

.˝0Ja C �k?v?J
0

a/

�
Ja

A10 D A01 A20 D �A02 A30 D A03

A21 D �A12 A23 D �A32 A31 D A13

2.3.3 Vlasov Method for a Magnetized Plasma

The Vlasov method leads to a form for the response tensor that is equivalent to but
superficially different from that obtained using the forward-scattering method.
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Covariant Vlasov Equation

The method is based on the covariant Vlasov equation, which is
�

u�
@

@x�
Cm

du�

d�

@

@p�



F.x; p/ D 0; (2.3.14)

with du�=d� determined by the equation of motion (2.2.1). On Fourier transform-
ing (2.3.14) with (2.2.1) and using (2.2.2), one obtains

�
�iku C q F

��
0 u�

@

@p�

�
F.k; p/

D �iq
Z
d�.2/ k1uG

��.k1; u/A�.k1/
@F.k2; p/

@p�
; (2.3.15)

where the right hand side is the convolution of the Lorentz force due to the
perturbing electromagnetic field and the perturbed distribution function. One may
interpret the operator q F ��

0 u�@=@p� on the left hand side as d=d� , that is, as the
derivative with respect to proper time along the orbit.

One may integrate (2.3.15) once before making an expansion in powers of the
amplitude of the fluctuating field. With u interpreted as the unperturbed orbit u.�/,
given by (2.1.6) and (2.1.7), integrating (2.3.15) once gives

F
�
k; p.�/

� D �iq eikX.�/
Z �

d� 0 e�ikX.� 0/

Z
d�.2/ k1u.�

0/

� G˛�
�
k1; u.�

0/
�
A�.k1/

@F.k2; p.�
0//

@p˛.� 0/
: (2.3.16)

It is convenient to omit the subscript 0 on the initial values in (2.1.6) and (2.1.7), so
that one has

u�.�/ D Pt��.�/u�; u� D u�.0/ D .�; u?; 0; uz/; (2.3.17)

with u? D �v?, uz D �vz and with p� D mu� D ."; p?; 0; pz/. The explicit form
for the tensor Pt��.�/ is given by (2.1.6). One also has

kX.�/ D kx0 C .ku/k� C k?R sin.� �˝0�/; (2.3.18)

with R D u?=˝0 the gyroradius.

Linearized Vlasov Equation

In the Vlasov method, the weak turbulence expansion involves an expansion of
F.k; p/ in powers of A.k/:

F.k; p/ D F.p/ .2
/4 ı4.k/C
1X
nD1

F .n/.k; p/: (2.3.19)
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On inserting (2.3.19) into (2.3.15) one obtains a hierarchy of equations, starting with
the linearized Vlasov equation,

�
�iku C q F

��
0 u�

@

@p�

�
F .1/.k; p/ D �iq kuG˛�.k; u/A�.k/

@F.p/

@p˛
; (2.3.20)

with the nth term in the expansion determined by

�
�iku C q F

��
0 u�

@

@p�

�
F .n/.k; p/

D �iq
Z
d�.2/ k1uG

˛�.k1; u/A�.k1/
@F .n�1/.k2; p/

@p˛
: (2.3.21)

The solution of this hierarchy of equations is obtained by substituting (2.3.19)
into (2.3.16), with the linearized Vlasov equation the first order term.

The explicit form for the first order term is

F .1/
�
k; p.�/

� D �iq A�.k/
Z 1

0

d� eikŒX.�/�X.���/�

� ku.� � �/G˛�
�
k; u.� � �/� @F.p/

@p˛.� � �/ ; (2.3.22)

where the variable � 0 in (2.3.16) is replaced by � D � � � 0 in (2.3.22), and where
Pt��.�/ D Pt��.��/ is used, cf.(̃2.1.7).

The linear response tensor is found by writing the induced current in the form

J .1/�.k/ D q

Z
d4p.�/

.2
/4
u�.�/ F .1/

�
k; p.�/

�
; (2.3.23)

and equating the right hand side to ˘��.k/A�.k/ to identify˘��.k/.

2.3.4 Vlasov Form for the Linear Response Tensor

The resulting expression for the Vlasov form for the linear response tensor, for a
distribution of one (unlabeled) species of particles, is

˘��.k/ D �iq2
Z
d4p.�/

.2
/4

Z 1

0

d� u�.�/ eikŒX.�/�X.���/�

� ku.� � �/G˛�
�
k; u.� � �/� @F.p/

@p˛.� � �/
: (2.3.24)
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The Vlasov form (2.3.24) is equivalent to the forward-scattering form (2.3.4),
as may be shown by partially integrating. The relatively lengthy calculation is
facilitated somewhat by noting the identity

@

@p˛.�/

�
ku.�/G˛�

�
k; u.�/

�� D 0: (2.3.25)

In evaluating the derivative @F.p/=@p˛.� � �/ in (2.3.27), one needs to take
account of the fact that F.p/ is independent of the gyrophase, and hence of � or �.
The derivative in (2.3.27) may be written in the form

@F.p/

@p˛.� � �/ D
"

u?˛.� � �/

u?
@

@p?
C @

@p˛k

#
F.p/: (2.3.26)

Terms proportional to ku.� � �/ in the integrand in (2.3.27) are perfect differentials,
ku.� � �/ e�ikX.���/ D id Œe�ikX.���/�=d� , and may be integrated trivially. The
integrand of the integrated term depends on � only through u�.�/, which reduces to
u�k after integrating over gyrophase. With these changes (2.3.24) becomes

˘��.k/ D q2
Z

d4p

.2
/4
u�k

"
u�k
u?

@

@p?
� @

@pk�

#
F.p/� iq2

Z
d4p.�/

.2
/4
u�.�/

�
Z 1

0

d� eikŒX.�/�X.���/� u�.� � �/
"
.ku/k

u?
@

@p?
C k˛

@

@p˛k

#
F.p/:

(2.3.27)

The term in (2.3.27) that does not involve the �-integral is symmetric in �; �, as may
be seen by partially integrating the derivative with respect to pk� . Hence, in (2.3.27)
one may replace u�k @=@pk� by u�k@=@pk�, or by half the sum of the two to give an
obviously symmetric form.

The form (2.3.24) includes both hermitian and antihermitian parts, with the latter
given by

˘A��.k/ D � iq
2

2

Z
d4p.�/

.2
/4

Z 1

�1
d� u�.�/ u�.� � �/ eikŒX.�/�X.���/�

�
"
.ku/k

u?
@

@p?
C k˛

@

@p˛k

#
F.p/: (2.3.28)
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2.3.5 Vlasov Form Summed over Gyroharmonics

Further reduction of (2.3.27) involves expanding in Bessel functions, using (2.1.27),
and performing the �-integral. The expression for the linear response tensor obtained
from (2.3.27) is

˘��.k/ D q2
Z

d4p

.2
/4

" 
u�k u�k
u?

@

@p?
� u�k

@

@pk�

!

�
1X

aD�1

U�.a; k/U ��.a; k/
.ku/k � a˝0

 
.ku/k

u?
@

@p?
C k˛k

@

@p˛k

!#
F.p/; (2.3.29)

with U�.a; k/ given by (2.1.28) with (2.1.29). The antihermitian part follows either
by applying the Landau prescription to (2.3.29) or by making the expansion in
Bessel functions and performing the �-integral in (2.3.28):

˘A��.k/ D i
q2
Z

d4p

.2
/4

1X
aD�1

U�.a; k/U ��.a; k/

� ı�.ku/k � a˝0

� .ku/k
u?

@

@p?
C k˛k

@

@p˛k

!
F.p/: (2.3.30)

The equivalence of the Vlasov form (2.3.29) and the forward-scattering form (2.3.8)
follows from a partial integration.

Response 3-Tensor

In non-covariant notation the response may be described by the dielectric tensor,
Ki

j .!;k/. The relation between the notations implies

Ki
j .!;k/ D ıi j C ˘i

j .k/

"0!2
; (2.3.31)

with the mixed components˘i
j .k/, with k� D Œ!;k�, numerically equal to minus

the contravariant components˘ij .k/.
The 3-tensor components of (2.3.29) and (2.3.30) follow from the � D i , � D j

components of U�.a; k/U ��.a; k/. The explicit expression, (2.1.28) with (2.1.29)
for U�.a; k/ implies
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U iU �j D

0
BBBBBB@
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J 2a �i��v?
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JaJ

0
a �vz
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i��v?
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a .�v?/2 J 02

s i��2v?vz JaJ
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a

�vz
a˝0

k?
J 2a �i��2v?vz J

2
a .�vz/

2J 2a

1
CCCCCCA
; (2.3.32)

where the arguments of U�.a; k/, Ja.k?R/ are omitted. On expressing F.p/

in 8-dimensional phase space in terms of the distribution function f .p/ in 6-
dimensional phase space, using d4p F.p/=.2
/4 D d3p f .p/=.2
/3� , the
derivative @F.p/=@p0 in (2.3.27) is omitted such that the term proportional to
k˛k @F.p/=@p

˛
k is replaced by a term proportional to k � @f .p/=@p for example. The

space-components of (2.3.29) become

˘ij .k/ D q2
Z

d3p

.2
/3�
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@pz
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�.! � kzvz/� a˝0

�
! � kzvz

v?
@

@p?
C kz

@

@pz


#
f .p/: (2.3.33)

2.4 Response of a Relativistic Thermal Plasma

The linear response tensor for a relativistic, thermal, magnetized plasma was first
calculated by Trubnikov [2]. A covariant generalization of Trubnikov’s calculation
is presented in this section, starting with the Vlasov form for the response tensor.
The evaluation of the forward-scattering form leads to a superficially different result;
the two forms are related by identities satisfied by the Trubnikov functions that
appear.

2.4.1 Trubnikov’s Response Tensor for a Magnetized Plasma

A relativistic thermal distribution is the Jüttner distribution [3, 4]

F.p/ D .2
/3n�

m2K2.�/
ı.p2 �m2/ expŒ��.p Qu=m/�; f .p/ D 2
2n� e���

m3K2.�/
;

(2.4.1)

where K2.�/ is a Macdonald function, which is a modified Bessel function, with
argument � D m=T , which is the inverse temperature in units of the rest energy
of the particle. (The factors 2
 result from the normalization convention that every
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integral over a component of momentum has a factor 2
„ in the denominator, with
„ D 1 here.) The normalization corresponds to

npr D
Z

d4p

.2
/4
F.p/ D

Z
d3p

.2
/3
f .p/

�
; n D

Z
d3p

.2
/3
f .p/; (2.4.2)

where npr is the proper number density, and n is the number density in the rest
frame.

On inserting the Jüttner distribution (2.4.1) into (2.3.24), one needs to evaluate
the derivative of F.p/ / ı.p2 �m2/ exp.�� uQu/. The relevant derivative gives

ku.� 0/G˛�
�
k; u.� 0/

� Pt˛ˇ.� 0/
@F.p/

@pˇ
D � �

m

�
ku.� 0/ Qu� � k Qu u�.� 0/

�
F.p/; (2.4.3)

with � 0 D � � �. The first term on the right hand side of (2.4.3) leads to a trivial
�-integral, due to the integrand being a perfect differential:

Z 1

0

d� ku.� � �/ eikŒX.�/�X.���/� D i: (2.4.4)

In this way (2.3.27) reduces to

˘��.k/ D �q
2�

m

Z
d4p

.2
/4
F.p/

�
Qu� Qu� C i k Qu

Z 1

0

d� u� Pt�� .��/u� eiR.�/u
�
;

(2.4.5)

where the 4-vector

R�.�/ D k˛
�
t˛�.��/ � t˛�.0/

�
(2.4.6)

is introduced. Using the definition (2.3.5) of T ��.�/, an alternative form for
(2.4.6) is

R�.�/ D k˛T
�˛.�/; QR�.�/ D kˇT

ˇ�.�/; (2.4.7)

where QR�.�/ is defined for a later purpose.
It is convenient to define the function

I.�; �; s C s0/ D
Z

d4p

.2
/4
F.p/ eiR.�/uC.sCs0/u

D n�

2
m2K2.�/

Z
d4p

.2
/4
ı.p2 �m2/ e�Œ�Qu�iR.�/�.sCs0/�u: (2.4.8)



62 2 Response Tensors for Magnetized Plasmas

The integral over d4p reduces to a standard integral for the MacDonald function
K1, with a complex argument:

I.�; �; s C s0/ D n�

K2.�/

K1

�
r.�/

�

r.�/
; (2.4.9)

with the complex function r.�/ defined by

r.�/ D ��
� Qu � iR.�/ � .s C s0/

�2�1=2
: (2.4.10)

In the rest frame of the plasma, and for s� D 0, s0� D 0, (2.4.10) gives

r.�/ !
�
.� � i!�/2 C k2z �

2 C 2k2?
˝2
0

.1 � cos˝0�/

�1=2
:

The response tensor (2.4.5) may be re-expressed in terms of the function I.�; �/:

˘��.k/ D �q
2�

m

�
nQu� Qu� C i k Qu

Z 1

0

d� Pt�� .��/Ou� Ou�I.�; �/
�
; (2.4.11)

where Ou� denotes differentiating with respect to s� and setting s� D 0. Evaluating
the derivatives of the Macdonald functions using the identity (A.1.13), one has

Ou� K1

�
r.�/

�

r.�/
D a�.�/

K2

�
r.�/

�

r2.�/
;

Ou� Ou� K1

�
r.�/

�

r.�/
D �g�� K2

�
r.�/

�

r2.�/
C a�.�/a�.�/

K3

�
r.�/

�

r3.�/
;

a�.�/ D � Qu� � iR�.�/; Qa�.�/ D � Qu� � i QR�.�/: (2.4.12)

The resulting expression for the response tensor is

˘��.k/ D �q
2n�

m

�
Qu� Qu� � i

k Qu �
K2.�/

Z 1

0

d�

�


t .1/��.�/

K2

�
r.�/

�

r2.�/
� t .2/��.�/ K3

�
r.�/

�

r3.�/

��
; (2.4.13)

with Pt��.�/ given by (2.1.14) and with

t .1/��.�/ D Pt��.��/ D PT ��.�/; t .2/��.�/ D a�.�/ Qa�.�/; (2.4.14)

with a�.�/, Qa�.�/ defined by (2.4.12). The form (2.4.13) with (2.4.14) is a covariant
version of the response tensor originally derived by Trubnikov [2].
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The antihermitian part of (2.4.13) is

˘A��.k/ D i
q2n�2!

2mK2.�/

Z 1

�1
d�

"
t .1/��.�/

K2

�
r.�/

�

r2.�/
�R�.�/ QR�.�/ K3

�
r.�/

�

r3.�/

#
:

(2.4.15)

For some purposes it is convenient to introduce a matrix representation of the
two tensorial quantities inside the integrand in (2.4.13). The following matrix
representations apply in the rest frame of the plasma, Qu� D Œ1; 0�, with the axes
oriented to give k D .k?; 0; kz/, b D .0; 0; 1/. One has

PT ��.�/ D

0
BB@

1 0 0 0

0 � cos˝0� � sin˝0� 0

0 �� sin˝0� � cos˝0� 0

0 0 0 �1

1
CCA ; (2.4.16)

T ��.�/ D
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BBBBBBB@
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0 � sin˝0�
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1 � cos˝0�

˝0

0

0 �� 1 � cos˝0�

˝0

� sin˝0�

˝0

0

0 0 0 ��

1
CCCCCCCA
: (2.4.17)

Explicit forms for the 4-vectors (2.4.7) are

R�.�/ D
�
!�; k?

sin˝0�

˝0

; �k?
1� cos˝0�

˝0

; kz�



;

QR�.�/ D
�
!�; k?

sin˝0�

˝0

;��k?
1 � cos˝0�

˝0

; kz�



: (2.4.18)

Manifestly Gauge-Invariant Form

The response tensor in the form (2.4.13) must satisfy the charge-continuity and
gauge-invariance conditions, k�˘��.k/ D 0, k�˘��.k/ D 0. On writing down
the relevant conditions one finds that they are not trivially satisfied. These relations
imply that certain identities must be satisfied. These identities are of the form

f .0/
K�.�/

��
C
Z 1

0

d�



df .�/

d�

K�

�
r.�/

�

r�.�/
C if .�/ ka.�/

K�C1
�
r.�/

�

r�C1.�/

�
D 0;

(2.4.19)

with arbitrary f .�/ and �. The identity is confirmed by a partial integration,
noting that r2.�/ D a�.�/a�.�/ with (2.4.12) and (2.4.7) implies dr.�/=d� D
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�ika.�/=r.�/. The specific identities required to confirm that (2.4.13) satisfies
the charge-continuity and gauge-invariance conditions correspond to � D 2 and
f .�/ D 1, f .�/ D �, f .�/ D sin˝0� and f .�/ D 1� cos˝0� in (2.4.19).

To rewrite (2.4.13) in a form that manifestly satisfies the charge-continuity and
gauge-invariance conditions, the integral is re-expressed in a form that involves only
K3

�
r.�/

�
=r3.�/. This involves using dr.�/=d� D �ika.�/=r.�/ with � D 2 twice,

with f .�/ D T ��.�/, df .�/=d� D t .1/��.�/, and then with f .�/ D Qu� Qu� . The
result is

˘��.k/ D i
q2n�2 k Qu
mK2.�/

Z 1

0

d�
�
k˛T

�˛.�/ kˇT
ˇ�.�/

� k˛kˇT
˛ˇ.�/ T ��.�/ � i� k Qu QT��.�/

�K3

�
r.�/

�

r3.�/
; (2.4.20)

which involves the tensor

QT ��.�/ D T˛ˇ.�/G
˛�.k; Qu/Gˇ�.k; Qu/: (2.4.21)

Contracting (2.4.20) with either k� or k� gives zero as required. In the rest frame,
explicit expressions for the tensor quantities in (2.4.21) follow from (2.4.18).

2.4.2 Forward-Scattering Form of Trubnikov’s Tensor

Trubnikov’s method may also be applied to the forward-scattering form of the
response tensor (2.3.4). The steps involved are as follows: insert the form (2.4.1)
for the Jüttner distribution into (2.3.4), write u�.� � �/ D Pt�� .��/u� .�/, include
the dependences on u.�/ in exponential form using u� D @esu=@s� with s� ! 0,
evaluate the integral over d4p.�/ using (2.4.8), and carry out the differentiations
using (2.4.12). After writing kuG˛�.k; u/ D .k�g˛� � k˛g��/u� , kuGˇ�.k; u/ D
.k�gˇ� � kˇg��/u� , this procedure gives

˘��.k/ D q2n�

K2.�/m

Z 1

0

d� T˛ˇ.�/ .k
�g˛� � k˛g��/.k�gˇ� � kˇg��/

� Pt� �.��/
�

� g��
K2

�
r.�/

�

r2.�/
C a�.�/a�.�/

K3

�
r.�/

�

r3.�/

�
: (2.4.22)

The coefficients of the K2

�
r.�/

�
=r2.�/ and K3

�
r.�/

�
=r3.�/ terms are

T˛ˇ.�/ .k
�g˛� � k˛g��/.k�gˇ� � kˇg��/ Pt� �.��/g��

D .d=d�/ŒT ��.�/k˛kˇT
˛ˇ.�/ � kˇT

�ˇ.�/k˛T
˛�.�/�;

.k�g˛� � k˛g��/.k�gˇ� � kˇg��/ Pt� �.��/a� .�/a�.�/ D �2.k Qu/2 QT ��.�/
�Œ2i� k Qu C k�k�T

�� .�/�ŒT ��.�/k˛kˇT
˛ˇ.�/ �R�.�/ QR�.�/�; (2.4.23)
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respectively, where (2.4.18) and (2.4.21) are used. The fact that the coefficient
of K2

�
r.�/

�
=r2.�/ in (2.4.22) is a perfect derivative allows one to use the iden-

tity (2.4.19) to rewrite (2.4.22) in the form (2.4.20), in which only K�

�
r.�/

�
=r�.�/

with � D 3 appears. One finds that (2.4.22) reproduces (2.4.20), which is equivalent
to (2.4.13). This establishes that (2.3.4) and (2.3.27) are equivalent starting points
for the calculation based on Trubnikov’s method.

2.4.3 Other Forms of ˘ ��.k/ for a Jüttner Distribution

There are further forms for ˘��.k/ that are suggested by methods used to evaluate
˘��.k/ in the quantum case. An important practical difference between the non-
quantum and quantum cases is that the continuous variable p? is replaced by
a discrete variable, pn D .2neB/1=2, with n D 0; 1; : : : the Landau quantum
number. In some ways this makes the quantum case simpler than its non-quantum
counterpart: the only continuous variable over which one must integrate is pz. It is
then convenient to write the resonant denominator in terms of solutions for pz. In
the non-quantum limit these solutions correspond to pz D pz˙, given by (2.1.34),
and it is of interest to consider forms for ˘��.k/ that are written in this manner.

The resonant denominator, .ku/k�a˝0 D ."!�ajqjB�pzkz/=m, is rationalized
by multiplying by "!CajqjBCpzkz. This leads to the resonant denominator being
replaced by the resonance condition in the form (2.1.33), that is, by a quadratic
function pz. The integrand in (2.3.29) can then be rewritten using

U�.a; k/U ��.a; k/
.ku/k � a˝0

D
X
˙

˙mU
�.a; k/U ��.a; k/
2!ga.!2 � k2z /

"! C ajqjB C pzkz

pz � pz˙
;

(2.4.24)

with ga given by (2.1.34). It is convenient to separate U�.a; k/ into U�

k .a; k/ C
U
�

?.a; k/ using (2.3.11), with pz appearing only in U�

k .a; k/ D u�kJa.k?R/, with

u�k D p
�

k =m D ."; 0; 0; pz/=m. After some manipulations, the sum of (2.4.24) over
a reduces to

1X
aD�1

U�.a; k/U ��.a; k/
.ku/k � a˝0

D 1

.k2/k
Œu�k k

�
k C u�kk

�

k � .ku/kg��k �

Cm
X
˙

˙
1X

aD�1

U
�

˙.a; k/U ��˙ .a; k/

2ga.k2/k
"C "˙
pz � pz˙

; (2.4.25)

with .k2/k D !2 � k2z , with "˙ given by (2.1.35), and with

U
�

k˙.a; k/ D u�k˙Ja.k?R/; u�k˙ D ."˙; 0; 0; pz˙/=m; (2.4.26)
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and U�

?˙.a; k/ D U
�

?.a; k/ independent of pz. The resulting expression is

˘��.k/ D q2n� k Qu
m.k2/k

Œu�kk
�
k C u�kk

�

k � .ku/kg��k �C
X
˙

˙
1X

aD�1

q2n�2k Qu
2m3K2.�/

�
Z 1

0

dp?p?
Z 1

�1
dpz

U
�

˙.a; k/U ��˙ .a; k/

2ga.k2/k
"C "˙
pz � pz˙

e��uQu: (2.4.27)

2.4.4 Relativistic Plasma Dispersion Functions (RPDFs)

The pz-integral in (2.4.27) can be expressed in terms of

Z
dpz

e���

pz � p˙
;

Z
dpz

�

e���

pz � p˙
: (2.4.28)

These integrals may be evaluated in terms of the relativistic plasma dispersion
function (RPDF) used to evaluate the response tensor for the Jüttner distribution in
the unmagnetized case. The definition of this relativistic dispersion function is [5]

T .v0; �/ D
Z 1

�1
dv

e���

v � v0 ; (2.4.29)

with v0 D !=jkj in the unmagnetized case, such that the Cerenkov resonance is
at v D v0. In the magnetized case, the resonances occur at v D vz˙ D pz˙="˙,
determined by (2.1.34) and (2.1.35). An intermediate step in the evaluation is to
write pz in terms of the parameter t introduced in (2.1.36): this involves writing
pz="? D 2t=.1 � t2/, so that one has � D "=m D ."?=m/.1C t2/=.1 � t2/. It is
convenient to define a plasma dispersion function

J.t0; �?/ D
Z 1

�1
dt
e��?.1Ct 2/=.1�t 2/

t � t0
; (2.4.30)

with t0 D t˙ and �? D �"?=m. The dispersion integral (2.4.30) can be expressed
in terms of (2.4.29):

J.t0; �?/ D 1

2

�
� .1 � v20/

1=2

v0

�
2K1.�?/C .1 � v20/

�?
T 0.v0; �?/



C T .v0; �?/

�
;

(2.4.31)

with v0 D 2t0=.1C t20 /.
The form of the response tensor that results from the use of this procedure

is a nonquantum counterpart of a relativistic quantum form, but in this case that
nonquantum case is intrinsically more complicated than its quantum counterpart.
The reason is that the resulting expression for the response tensor includes an
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integral over p? with the argument �? of T .v0; �?/ a function of p?. In the
quantum case the integral over p? is replaced by a sum over Landau levels, and
this complication does not arise.

2.4.5 Strictly-Perpendicular Jüttner Distribution

Trubnikov’s method may be used to evaluate the response tensor for strictly-parallel
and strictly-perpendicular Jüttner distributions. A strictly-parallel distribution is
relevant to pulsars and is discussed in Sect. 2.6.3. Trubnikov’s method is used
here to evaluate the response tensor for the strictly-perpendicular relativistic thermal
distribution

F.p/ D n�1=2

.2
/1=2mcK3=2.�/
ı.p2 �m2/ ı.pz/ expŒ��.p Nu/=m�: (2.4.32)

When (2.4.32) is inserted into the Vlasov form (2.3.24) for the response tensor,
some terms involve the derivative of ı.pz/. Such terms are to be evaluated only after
a partial integration is performed. An alternative procedure, adopted here, is to start
from the forward-scattering form (2.3.4) rather than (2.3.24).

On inserting (2.4.32) into (2.3.4), the calculation is closely analogous to that
leading to (2.4.22) for the isotropic thermal distribution. There are three notable
changes: (1) the orders of all the functions K�.z/=z� are reduced by 1=2; (2) the
argument, r.�/, of these functions is replaced by rp.�/, which is equal to r.�/
evaluated at kz D 0; and (3) in the counterpart of (2.4.22) the expression inside the
square brackets is replaced by the corresponding expression with the components
along the magnetic field set to zero.

In place of (2.4.9) one has

I.�; �/ D n�1=2

K3=2.�/

K1=2

�
rP.�/

�

r
1=2
P .�/

: (2.4.33)

In place of (2.4.10) and (2.4.12) one has
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; (2.4.34)
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respectively, and with a�P .�/ D a�.�/ � b� b�a�.�/. The subscript P denotes a
projection onto the 3D subspace orthogonal to the magnetic field, in particular with
g
��
P D g�� C b�b� .

The resulting expression for the response tensor that replaces (2.4.22) for the
strictly-perpendicular distribution (2.4.32) is

˘��.k/ D q2n�1=2
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Z 1
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d�
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(2.4.35)

with a
�
P .�/ D � Qu�P � ikˇT

�ˇ
P .�/, Qa�P.�/ D � Qu�P � ik˛k˛T

˛�
P .�/, and

T
��

P .�/ D T ��.�/ � �b�b� . Various alternative forms are obtained by using
the identity (2.4.19), with ka.�/ reinterpreted as kaP.�/.

In particular, the � D � D 3 term in (2.4.35) simplifies considerably, reducing to

˘33.k/ D q2n�1=2

mK3=2.�/

Z 1
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d� �
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�2 K5=2
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5=2

? .�/

�
D q2npr

m
; (2.4.36)

where (2.4.19) is used. One has npr D nK1=2.�/=K3=2.�/, for the distribu-
tion (2.4.32).

The form (2.4.35) is a covariant generalization of the result derived by Trubnikov
and Yakubov [6]. The Macdonald functions of half-integer order in (2.4.35) can be
expressed in terms of a rational function times an exponential function,

K1=2.z/ D
�

2

	1=2 e�z

z1=2
; K3=2.z/ D

�

2

	1=2 e�z

z3=2
.1C z/;

K5=2.z/ D
�

2

	1=2 e�z

z5=2
.3C 3z C z2/: (2.4.37)
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2.5 Weakly Relativistic Thermal Plasma

Trubnikov’s response tensor contains all relativistic effects for a magnetized thermal
plasma, but it is too cumbersome for most practical applications, and approxima-
tions to it need to be made. An important application of the general result is in
deriving relativistic correction to the response tensor for a nonrelativistic magne-
tized thermal plasma, referred to here as the weakly relativistic approximation.
This involves assuming � 	 1 (T � 5 � 109 K for electrons or positrons) and
expanding in powers of 1=�. When this expansion is made, weakly relativistic
effects are described in terms of appropriate RPDFs, referred to as Shkarofsky
functions, or Dnestrovskii functions in the case of perpendicular propagation. In
this section the response tensor is first evaluated directly for a nonrelativistic
thermal distribution, and this nonrelativistic approximation is rederived starting
from Trubnikov’s response tensor. The corrections and other changes associated
with weakly relativistic effects are then discussed.

2.5.1 Nonrelativistic Plasma Dispersion Function

In the nonrelativistic limit, the Jüttner distribution reduces to a Maxwellian distri-
bution. Dispersion in a magnetized thermal plasma involves the (nonrelativistic)
plasma dispersion function familiar in the context of an unmagnetized thermal
plasma, denoted here by Z.y/.

The nonrelativistic approximation corresponds formally to c ! 1, and it is
helpful to use ordinary units, rather than natural units, by including c explicitly in
discussing this limit. The nonrelativistic limit corresponds to � ! 1, p? ! mv?,
pz ! mvz. In the Jüttner distribution (2.4.1) one has � D mc2=T ! 1, when the
asymptotic approximation to the Macdonald functions apply. For z 	 1 one has

K�.z/ 
 .
=2z/1=2e�z: (2.5.1)

An expansion in 1=c2 gives � D 1 C .v2? C v2z /=2c
2 C � � � , so that the Jüttner

distribution (2.4.1) gives

f .p/ D 2
2„3n� e���

.mc/3K2.�/


 p

2
 „
mV

!3
ne�.v2

?
Cv2z /=2V 2 ; (2.5.2)

which is a Maxwellian distribution with temperature T D mV 2. Note that the
normalization is the conventional one used in quantum statistical mechanics,

n D
Z

d3p

.2
„/3 f .p/ D 2


Z 1

0

dp? p?
Z 1

�1
dpz

f .p/

.2
„/3 ; (2.5.3)

rather than the one used conventionally in classical kinetic theory, where the factor
.2
„/3 is omitted in (2.5.3).
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Modified Bessel Functions, In.z/

A major simplification occurs in the evaluation of the response tensor in the
nonrelativistic limit for a Maxwellian distribution: the integrals over p? and pz

factorize into two independent integrals. The resonant denominator in the response
tensor (2.3.29) reduces to ! � a˝0 � kzvz, which does not involve v?. The integral
over v? involves only the Bessel functions, whose argument is proportional to v?.
The v?-integral can be evaluated in terms of modified Bessel function, Ia.�/, using

Z 1

0

dv?v?
V 2

0
@

J 2a .z/
v?J 0

a.z/Ja.z/
v2?J 02

s .z/

1
A e�v2

?
=2V 2

D e��

0
B@

Ia.�/

.˝0=k?/ŒIa.�/� I 0
a.�/�

.˝0=k?/2fa2Ia.�/� 2�2ŒIa.�/ � I 0
a.�/�g

1
CA ; (2.5.4)

with z D k?v?=˝0, � D k2?V 2=˝2
0 , and where the latter two identities follow from

the first using the properties (A.1.3)–(A.1.4) of Ja and (A.1.7)–(A.1.9) of Ia.

Plasma Dispersion Function Z.y/

The vz-integral involves the factor exp.�v2z =2V 2/ in the Maxwellian distribution
and the resonant denominator which depends on vz. This integral can be evaluated
in terms of the nonrelativistic plasma dispersion function. A conventional definition
of this function is the function Z.y/, which is often written in terms of a related
function 	.y/ D �yZ.y/. The definition is [7]

Z.y/ D �	.y/
y

D 
�1=2
Z 1

�1
dt

e�t 2

t � y ; (2.5.5)

which is a complex error function.Z.y/ satisfies the differential equation

dZ.y/

dy
D �2�1C yZ.y/

�
: (2.5.6)

For real y, Z.y/ has real and imaginary parts

ReZ.y/ D �2 e�y2
Z y

0

dt et
2

; ImZ.y/ D i
p

e�y2 ; (2.5.7)

respectively. Expansions for large and small y give
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ReZ.y/ D � 1
y

8̂
<
:̂
1C 1

2y2
C 3

4y4
C � � � for y 	 1;

2y2 C 4

3
y4 C � � � for y � 1:

(2.5.8)

The specific integral that appears in the response function corresponds to t !
vz=

p
2V , y ! ya D .! � a˝0/=

p
2kzV . The argument ya may be interpreted

in terms of the line profile for gyromagnetic absorption at the ath harmonic.
Absorption is described by the imaginary part of Z.ya/, and according to (2.5.7)
this corresponds to a gaussian profile, centered on ! D a˝0, with a line widthp
2 jkzjV determined by the Doppler effect due to the thermal spread in vz. The real

part ofZ.ya/ describes the dispersion corresponding to this absorption. The real and
imaginary parts of any causal function, f .!/, satisfy the Kramers-Kronig relation

Re f .!/ D � i



℘
Z 1

�1
d!0

!0 � !
Imf .!0/; (2.5.9)

where℘ denotes the Cauchy principal value, with f .!/ D Z.ya/ here.

2.5.2 Response Tensor for a Maxwellian Distribution

The resulting expression for the dielectric tensor (2.3.31), with the contribution
of only one (unlabeled) species retained explicitly, corresponds to the 3-tensor
components of ˘��.k/ in the rest frame of the plasma. These components are
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with ya D .! � a˝0/=
p
2kzV , and with
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CCCCCCA
;

(2.5.11)

with �a D .! � a˝0/=˝0, where �� is the sign of the charge, and where the
argument � of the modified Bessel functions is omitted.

The antihermitian part of the response tensor (2.5.10) follows from the imaginary
part of the dispersion function (2.5.7). This gives
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˘Aij .!;k/ D i
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e�y2a N ij .a; !;k/: (2.5.12)

The particular case of Landau damping corresponds to a D 0. In this case, (2.5.11)
simplifies to
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Further simplification occurs in the small gyroradius limit, � ! 0, I0 ! 1.

Cold Plasma Limit

The equivalent dielectric tensor may be defined by

Ki
j .k/ D ıij C 1

"0!2
˘i

j .k/; (2.5.14)

with �0 D 1="0c
2 in SI units. The dielectric tensor implied by (2.5.10) with (2.5.11)

in (2.5.14) includes the cold-plasma response tensor in the limit V ! 0. The
cold plasma response is described by (1.2.27) with (1.2.28). The cold plasma limit
of (2.5.10) with (2.5.11) follows from V ! 0, which implies � ! 0, ya ! 1, with
yaZ.ya/ ! �1 for ya ! 1. The power series expansion of the modified Bessel
functions,

Ia.�/ D
1X
kD0
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kŠ.a C k/Š

�
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2


aC2k
; (2.5.15)

implies that in the limit � ! 0, only a D 0;˙1. The leading terms suffice to
reproduce the cold plasma limit for the component with i; j D 1; 2. For the 13- and
31-components, in this limit the contributions from a D ˙1 sum to zero for each
species. For the 23- and 32-components, one obtains zero in the cold plasma limit
only after summing over species and assuming that the plasma is charge-neutral.
Separating the sum over species, ˛, into sums over the positively charges, ˛C, and
negatively charged, ˛�, charge neutrality requires

X
˛C
q˛Cn˛C D

X
˛�

jq˛�jn˛�;
X
˛C

!2p˛C
˝˛C

D
X
˛�

!2p˛�
˝˛�

; (2.5.16)

where !p˛˙ and ˝˛˙ are the plasma and cyclotron frequencies, respectively. For
the 33-component, for a D 0 one needs to retain the next order term in the
expansion (2.5.8) of Z.y0/ for y0 	 1 to reproduce the cold plasma result.
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Thermal corrections to the cold plasma limit follow from the result (2.5.11) by
expanding in � / V 2 and in 1=ya / V . When only the terms of zeroth and first
order in V 2 are retained, there are contributions from a D 0;˙1;˙2. The general
form of the response tensor to this order is rather cumbersome, and it is usually
appropriate to make other simplifying assumptions before making this expansion.

Thermal Corrections to Longitudinal Response Tensor

A particular simplifying assumption is to assume that only the longitudinal part
of the response need be retained. The contribution of a single species to the
longitudinal part of the dielectric tensor (2.3.31),KL.!;k/ D 1C˘L.!;k/="0!

2,
follows from the longitudinal part of (2.5.10) with (2.5.11), which gives
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Expanding in powers of V 2 gives
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(2.5.18)

The dispersion relation for longitudinal waves in a magnetized thermal electron gas
follows from !2 C �0˘

L.!;k/ D 0 with (2.5.18) evaluated for electrons.

MHD-Like Limit

A different simplifying assumption applies to MHD-like waves in an electron-ion
plasma. Adding a label ˛ for species ˛ D e; i , with ya ! y˛a , this limit corresponds
to ye0 � 1, with yea 	 1 for a ¤ 0 and yia 	 1 for all a. For the 23- and
32-components, the cancelation between electron and ion contributions, due to the
charge-neutrality condition (2.5.16), no longer occurs, so that these components are
nonzero. The resulting approximate expression for the dielectric tensor is
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!2pi

˝2
i

�
1C !2
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X
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!2pi
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C !2p

k2zV
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e

; (2.5.19)
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with K1
1 D K2

2, K1
2 D �K2

1, K1
3 D K3

1, K2
3 D �K3

2, and withP
i !

2
pi =˝

2
i D c2=v2A in ordinary units.

The most important contribution to damping in this limit is Landau damping by
electrons. The antihermitian part of the response tensor is given by retaining only
the resonance at a D 0 is (2.5.12). In the small gyroradius approximation, � ! 0,
I0 ! 1 (2.5.13) gives

KAi
j .!;k/ D i

�

2

	1=2 q2n!

mjkzjV e
�!2=2k2z V 2 N i

j .0; !;k/; (2.5.20)

with the only nonzero components of N i
j .0; !;k/ being

N2
3 D �N3

2 D �i k?
kz

!

˝0

; N 3
3 D !2

k2z V
2
: (2.5.21)

2.5.3 Mildly Relativistic Limit of Trubnikov’s Tensor

It is of interest to rederive the foregoing results starting from Trubnikov’s response
tensor. The nonrelativistic limit of Trubnikov’s response tensor is found by taking
the limit � D mc2=T 	 1 in the response tensor in either the forms (2.4.13)
or (2.4.22) with (2.4.23). On expanding r.�/, defined by (2.4.10), in powers of 1=�,
one finds

r.�/ D � � i!� C k2z �
2

2�
C k2?
�˝2

0

.1� cos˝0�/CO.1=�/: (2.5.22)

With this approximation,� 	 1 implies jr.�/j 	 1, and the asymptotic limit (2.5.1)
of the Macdonald functions is then justified. This gives
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	1=2 e��
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� k2z �

2
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� k2?
�˝2

0

.1 � cos˝0�/



:

(2.5.23)

The final term involving cos˝0� can be expanded, effectively in gyroharmonics,
using the generating function for modified Bessel functions, (A.1.10). The modified
Bessel functions, Ia.�/, satisfy the differential equation (A.1.7) and the recursion
relations (A.1.9). Using these relations, one finds
2
66666664

1

cos˝0�

sin˝0�

cos2 ˝0�

sin2 ˝0�

sin˝0� cos˝0�

3
77777775
e� cos˝0� D

1X
aD�1

2
66666664
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I 0
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i.a=�/Ia.�/

I 00
a .�/

�.1=�2/Œa2Ia.�/� �I 0
a.�/�

�i.a=�2/ŒIa.�/ � �I 0
a.�/�

3
77777775
e�ia˝0� :

(2.5.24)
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After using (2.5.24) in the form (2.4.13) of Trubnikov’s response tensor to write
all the �-dependence in the integrand in exponential form, the �-integral can be
performed trivially.

The resulting integral over proper time � in either of the forms (2.4.13) or (2.4.22)
of Trubnikov’s response tensor can be evaluated in terms of the plasma dispersion
function (2.5.7). Three integrals appear:

Z 1

0

d�

2
4
1

�

�2

3
5 exp

�
i.! � a˝0/� � k2z �

2
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! � a˝0

2
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�a˝0=k
2
z V

2

�2
a˝

2
0=k

4
zV

4

3
5 ;

(2.5.25)

with �a D .! � a˝0/=˝0 D ya
p
2kzV=˝0. For the �; � D 1; 2 components the

integral with unity in the square brackets appears, for the components with either
� D 1; 2, � D 0; 3 or � D 0; 3, � D 1; 2 the additional factor � appears, and for the
�; � D 0; 3 components the factor �2 appears. A derivation of the result (2.5.25),
with unity in the square brackets, involves the following steps: write � D c2=V 2;
replace the variable of integration by � by t D kzV �=

p
2; complete the square

in the exponent, which becomes �.t � iya/
2 � y2a; regard the integral over 0 �

t < 1 as a contour integral in complex-t space; and, deform the contour such that
it is along the imaginary-t axis from the origin to Im t D ya, and then parallel
to the real-t axis to infinity. The portions of the integral along the imaginary axis
and parallel to the real axis give (�i times) the real and imaginary parts of the
function Z.ya/, respectively, in (2.5.7). To evaluate the integrals with � or �2, one
includes the additional factors of t or t2 in the integral representation (2.5.5) for
Z.y/ to derive the results given in (2.5.25). In this way, one can show that the
space components of the form (2.4.13) of Trubnikov’s response tensor reproduce
the nonrelativistic result (2.5.10) with (2.5.11).

Shkarofsky’s Response 3-Tensor

To include weakly relativistic effects one needs to modify the approximations
made to reduce the exact expression for the response tensor to its nonrelativistic
counterpart. Specifically, in using the generating function for modified Bessel
functions, as in (2.5.24), one writes

r.�/ 
 r0.�/C�.1 � cos˝0�/; r0.�/ D Œ.� � i!�/2 C k2z �
2�1=2;

� D k2?
˝2
0r0.�/

; (2.5.26)

where� is implicitly a function of �. The results (2.5.24) apply, with � ! �.
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With this modification, Trubnikov’s response leads to Shkarofsky’s [8]
approximation to the response 3-tensor. Specifically, the 3-tensor components
of (2.4.13) become
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1
CCCCCCA
;

(2.5.27)

with r0.�/ given by (2.5.26), and where the argument � of the modified Bessel
functions is omitted for simplicity in writing. The derivatives @=@a and @=@kz are
understood to operate on the exponential functions exp.�ia˝0�/ and expŒ�r0.�/�,
respectively.

2.5.4 Shkarofsky and Dnestrovskii Functions

Another approximation is needed to allow the integral over � in (2.5.27) to be
evaluated in terms of a relativistic plasma dispersion function (RPDF). Two classes
of such functions are Shkarofsky functions and Dnestrovskii functions. Another
form for the RPDFs involves hypergeometric functions � 2.5.5.

Shkarofsky Functions

The approximation made to allow the integral over � in (2.5.27) is � � 1. The
modified Bessel functions are approximated by the leading term in their expansion,
Ia.�/ 
 �a=2aaŠ. The dependence of the integrand in (2.5.27) on � is made explicit
by writing� D ��=r0.�/, � D k2?=�˝2

0 . The integral over � can be written in terms
of the generalized Shkarofsky functions [9]

Fq;r .z; �/ D �i
Z 1

0

dt
.i t/r

.1 � i t/q
exp

�
izt � �t2

.1 � i t/

�
; (2.5.28)

where the dimensionless arguments, z D �.! � a˝0/=!, � D kz=!, are introduced
by writing � D t=!, with t dimensionless. The Shkarofsky functions [8] correspond
to the special case r D 0:

Fq.z; �/ D Fq;0.z; �/: (2.5.29)
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The resulting approximation to the space components of the response 4-tensor,
expanded to low orders in �, was written down by Shkarofsky [8], and generalized
by Robinson [10]. The latter form includes contributions from harmonics a D
0;˙1;˙2 and is of the form

˘�
�.k/ D �!

2
p�

"0
X�

�; (2.5.30)

with the components given by
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where the following notation is introduced:

F .a˙/
q;r D 1

2

�
Fq;r .za; k2z c2�=2!2/˙ Fq;r .z�a; k2z c2�=2!2/

�
; (2.5.32)

with z˙a D �.! � a˝0/=!.
Further physical approximations need to be made to the plasma dispersion

functions to derive results that are useful for applications. The special case of
perpendicular propagation is of particular relevance in identifying the effects that
distinguish the weakly relativistic approximation from the nonrelativistic approxi-
mation.

Dnestrovskii Functions

For perpendicular propagation, kz D 0, the function (2.5.26) simplifies to r0.�/ D
� � i!�, and the response tensor (2.5.27) simplifies considerably. The relativistic
plasma dispersion functions that appear can be written in terms of [11, 12]

Rl.z; �; a/ D �i
Z 1

0

dt
eizt��

.1 � i t/l
Ia.�/; (2.5.33)
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q

z0

Fq(z) 0

−q1/2

− q

q1/2

Fig. 2.1 A plot of the Dnestrovskii function Fq.z/ for real z, solid line for the real part and dotted
line for the imaginary part; the function 1=z is indicated by the dashed curve (From [12, 16],
reprinted with permission Cambridge University Press)

with � D �=.1 � i t/ and � D �k2?=˝2
0 . An approximate form is obtained by

expanding in ��<1, and then each term in the expansion can be written in terms of a
Dnestrovskii function [13].

A generalized Dnestrovskii function is defined as the counterpart for perpendic-
ular propagation of the generalized Shkarofsky function (2.5.28) [12]:

Fq;r .z/ D �i
Z 1

0

dt
.i t/reizt

.1 � i t/q
; Fq.z/ D Fq;0.z/: (2.5.34)

The special case r D 0 corresponds to the Dnestrovskii function [13]:

Fq.z/ D �i
Z 1

0

dt
eizt

.1 � i t/q : (2.5.35)

An alternative definition is [14, 15]

Fq.z/ D 1

� .q/

Z 1

0

dx
xq�1e�x

x C z
: (2.5.36)

Properties of these functions are summarized in Appendix A.2.3.
The Dnestrovskii function Fq.z/ is plotted in Fig. 2.1. For comparison, the

nonrelativistic counterpart, 1=z, for kz ! 0 is shown. Features to note are (a) the
resonance at z D 0 is removed, (b) there is a skewing so that the maximum value
occurs below z D 0, and (c) damping (which is absent in the nonrelativistic case) is
nonzero in a region below z D 0. An approximation to the Dnestrovskii function that
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is useful in understanding dispersion in the weakly relativistic case can be derived
from an expansion of Fq.z/ in derivatives of the nonrelativistic plasma dispersion
function:

Fq.z/ D � Z. /

.2q/1=2
� Z000. /

12q
� � � � ; (2.5.37)

with  D .z Cq/=.2q/1=2. Retaining only the leading term in (2.5.37) would imply
Fq.z/ D 0 at z D �q, which is close to the actual zero in Fig. 2.1.

Weakly Relativistic Dispersion for kz ¤ 0

For kz ¤ 0, the Shkarofsky functions and the Dnestrovskii functions are related by
an expansion in modified Bessel functions:

Fq.z; a/ D
1X

jD�1
e�2a Ij .2a/ Fq�j .z/; (2.5.38)

with q D a C 5=2, z D �˝0�a=!, a D �k2z =2!
2. An approximation analogous

to (2.5.37) is [17]

Fq.z; a/ D � Z. /

.4a C 2q/1=2
� .3aC q/Z000. /

3.4aC 2q/2
C � � � ; (2.5.39)

with  D .z C q/=.4a C 2q/1=2. Comparison of (2.5.37) and (2.5.39) suggests an
approximation Fq.z; a/ 
 FqC2a.z/ [17].

The Shkarofsky functions include both the nonrelativistic dispersion that exists
for kz ¤ 0 and the weakly relativistic dispersion described by the Dnestrovskii
functions for kz D 0. The center of the line, which is at ! D a˝0 in the
nonrelativistic case, is downshifted to z C q D 0 for kz D 0, and this is unchanged
for kz ¤ 0, so that the center of the line is determined approximately by (in ordinary
units with � ! c2=V 2)

! � a˝0

!

 �.aC 5=2/

V 2

c2
; (2.5.40)

for q D a C 5=2. The line width, which is ı!a D p
2 jkzjV in the nonrelativistic

case, is broadened to (ordinary units)

ı!s
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�
k2z V

2
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!2

˝2
0

V 2

c2

�1=2
; (2.5.41)

with ! 
 a˝0.
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A notable feature of the inclusion of relativistic effect occurs at sufficiently high
harmonics, a2 �>�. According to (2.5.41), for sufficiently large a the line width is
dominated by the relativistic contribution, which increases / a3=2. In comparison,
the separation between neighboring harmonics implied by (2.5.41) decreases more
slowly, / a. Hence, for sufficiently large a, the relativistic broadening exceeds the
separation between harmonics. The resulting smoothing out of the harmonics into a
continuum is a characteristic relativistic effect.

2.5.5 RPDFs Involving Hypergeometric Functions

An alternative approach to the evaluation of the response tensor for a relativistic
thermal distribution was taken by Swanson [18] by considering functions that can
be evaluated relatively simply by numerical methods, rather than by approximate
analytic methods. The approach in its simplest form applies only for perpendicular
propagation. The method involves performing the integral over pitch angle, ˛, in
terms of hypergeometric function, and the assumption of perpendicular propagation
is needed in order to use the relevant integral identities. The advantage of the
method is that the numerical evaluation of the integral of the resulting hypergeo-
metric functions over a Jüttner distribution is relatively straightforward. The two
hypergeometric functions that appear are defined by

1F2.aI b1; b2I x/ D � .b1/� .b2/

� .a/

1X
kD0

� .aC k/

� .b1 C k/� .b2 C k/
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; (2.5.42)
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�
1X
kD0

� .a1 C k/� .a1 C k/

� .b1 C k/� .b2 C k/� .b3 C k/

xk

kŠ
: (2.5.43)

The components of the response tensor in the Vlasov form (2.3.29) involve a
sum over harmonics, a, with a product of Bessel function in the numerator and a
resonant denominator that is proportional to a � a0, where a0 D .ku/k=˝0 does
not depend on a. The argument of the Bessel functions is proportional to sin ˛,
and for an isotropic distribution, the integral over ˛ can be expressed in terms of a
hypergeometric function. The relevant integrals include

Z 1

�1
d cos˛ ŒJa.b sin ˛/�2 D 2b2a

.2aC 1/Š
1F2.a C 1

2
I aC 3

2
; 2a C 1I �b2/: (2.5.44)
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Analogous integrals for all the other combinations of Bessel functions that appear
in the components of the response tensor can be evaluated similarly in terms of 1F2
with different arguments.

An alternative procedure [18] is to perform the infinite sum over a first, using the
Newberger sum rule [19]

1X
aD�1

Ja.z/Ja�n.z/
a � a0

D .�1/nC1

sin
a0

Jn�a0 .z/Ja0 .z/; (2.5.45)

which applies for n � 0 and arbitrary a0. Perpendicular propagation,kz D 0 implies
that a0 D �!=˝0 does not depend on ˛. The integral over ˛ can then be performed
using another set of integrals, including
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Analogous integrals for all the other combinations of Bessel functions that appear
in the components of the response tensor can be evaluated in terms of 2F3 with
different arguments.

The response tensor has six independent components in general, and two of
these are zero for perpendicular propagation. The four nonzero components can
be expressed in terms of five RPDFs that are integrals of hypergeometric functions
over a Jüttner distribution. These RPDFs are
2
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(2.5.47)

with a4.p/ D p2=3.m2 C p2/, a5.p/ D p2=3m2a0.a0 C 1//, b2 D ��p2=m2,
� D k2?=�˝2

0 , z D �.1 � a0˝0=!/. The nonzero components of the dielectric
tensor for kz D 0 are
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with K1
3 D K2

3 D 0.
Swanson [18] presented detailed results comparing the exact form for the

response tensor, evaluated using (2.5.48), and some of the approximate forms
discussed above.

2.6 Pulsar Plasma

A pulsar plasma is an exotic example of an intrinsically relativistic, strongly
magnetized electron gas. Despite an extensive literature and many novel ideas,
only some of which are discussed in this section, the radio emission mechanism
for pulsars is not understood.

2.6.1 Pulsars

Pulsars are strongly magnetized, rotating neutron stars that emit beamed radiation,
seen as a pulse as the beam sweeps across the observer’s line of sight. About 2000
radio pulsars are known, and these provide a large body of statistical data on pulsar
properties. A small fraction of these pulsars are observed at high energies, which
can include both pulsed nonthermal radiation and thermal radiation for the very hot
(>106 K) polar-cap regions of the neutron star surface. Although the basic features
of a pulsar model are widely accepted, the details of the electrodynamics remain
uncertain and controversial. The pulsed emission is attributed to radiation beamed
along magnetic field lines in a polar cap region, with the beaming associated with
a relativistically outflowing pair (electron–positron) plasma. In the discussion here,
the emphasis is on the properties of this so-called pulsar plasma.

The interpretation of pulsars is based on two models for the electrodynamics:
the vacuum-dipole model, in which the fields are those of a rotating magnetized
star in vacuo, and the corotating-magnetosphere model, in which the only electric
field in the magnetosphere is the corotation field, E cor, required for rigid corotation.
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These two models are both based on unjustifiable neglects – of the plasma in the
magnetosphere, and of the inductive electric field, respectively [20]. Nevertheless
the two models are used selectively as the basis for pulsar electrodynamics: the
vacuum-dipole model is used to treat the slowing down of the rotation and to
estimate the surface magnetic field and the age of the pulsar, and the corotating-
magnetosphere as the basis for detailed models for the distribution of plasma in the
magnetosphere.

Vacuum-Dipole Model

The basic observable parameters for a pulsar are its period, P , and the period
derivative, PP . Based on a magnetic-dipole model, the surface magnetic field is
estimated to be B� D 3:2� 1015 .P PP /1=2 T, and the characteristic age as / P=2 PP .
Pulsars are separated into three classes:. Most are normal pulsars with P � 10�2–
10 s,B � 107–109 T with characteristic ages ranging from �103–105 year for young
pulsars and up to >107 year for old pulsars. Recycled or millisecond pulsars, which
are very old pulsars spun up in binary systems, have P �<100ms and B� �<106 T.
There is a small class of magnetars with P 
 10 s and B� �>1010 T.

The polar cap is defined by the field lines that extend beyond the light cylinder,
r D RL D Pc=2
 . Assuming that the field lines are dipolar out to the light cylinder,
the last closed field line is the line r D rL sin2 � . Where this field line intersects the
stellar surfaces, at r D R�, defines the polar-cap angle, � D �PC,

�PC D arcsin.R�=rL/1=2 D arcsin.2
R�=Pc/ (2.6.1)

on the surface of the star. The field lines at � < �PC define the polar cap. The
maximum potential available can be estimated from the potential between the field
line at the magnetic pole and a field line at the edge of the polar cap. This is

˚max D R2�˝�B� sin2 �PC D R3�˝2�B�=c: (2.6.2)

For most pulsars, the corresponding maximum energy, e˚max, is very large com-
pared with the energy of particles needed to trigger a pair cascade, and only a
small fraction of ˚max needs to relocate along field lines to trigger pair creation
in a localized “gap”. For example, for parameters for the Crab pulsar one finds
˚max 
 1016 V, with somewhat smaller values for other pulsars. Normal pulsars are
thought to cease radiation when ˚max drops below the threshold (the “death line”)
for effective pair creation.

Corotating-Magnetosphere Model

In a corotating model, it is assumed that the corotation electric field,

Ecor D �.�� � x/ � B; (2.6.3)
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is present in the magnetosphere. The divergence of Ecor requires that the
Goldreich-Julian charge density

�GJ.t;x/ D �2"0ω � B.t;x/C "0.ω � x/ � curl B.t;x/; (2.6.4)

be present in the magnetosphere. In a conventional model, just above the stellar
surface, �GJ is provided by charges of a single sign drawn from the stellar surface.
With the surface the only source of charge, it is not possible to satisfy (2.6.4) at
greater heights. An additional source of charge is needed, and this is provided
by a pair cascade. The details of the cascade are model-dependent, with the
common feature in all models being the appearance of Ek ¤ 0, which accelerates
charges to sufficiently high energies for them to emit gamma rays that decay into
electron-positron pairs. The charge density required is set up through electrons
and positrons being separated by Ek ¤ 0. In older models, the pair creation
is assumed quasi-stationary and confined to local regions called gaps. When the
quasi-stationary assumption is relaxed, the inclusion of the displacement current
leads to an instability [21–24], resulting in large amplitude electric oscillations
(LAEWs) [25]. In a model involving LAEWs the pair creation is confined in time,
rather than space, to near the phase of the LAEW where the particles have their
maximum energy.

Properties of Pulsar Plasma

The pulsar plasma is identified as consisting of the pairs produced in this cascade.
These pairs can escape along the open field lines, ultimately forming a pulsar wind,
and need to be continuously replaced. The properties of the pulsar plasma are
poorly determined. These properties include the number density and mean energy
of the pairs. The number density can be expressed as M times the Goldreich-
Julian number density. This corresponds to a plasma frequency M1=2 times the
characteristic plasma frequency defined by �GJ,

!GJ D .˝�˝e/
1=2; (2.6.5)

where factors of order unity are ignored. The surface value of !GJ / . PP=P /1=4 is
relatively insensitive to the properties of pulsar, and it falls off / .R�=r/3=2 above
the surface. The values of the multiplicity, M , and of the mean Lorentz factor, N� ,
of the secondary pairs are plausibly in the ranges M � 103–105 and N� � 10–103

[26–28].
Due to the superstrong magnetic field in a pulsar, the lifetime for an electron to

radiate away its perpendicular energy through gyromagnetic emission is very short.
All the electrons and positrons in the pulsar plasma are assumed to be in their lowest
Landau state, corresponding to a one-dimensional (1D) distribution with p? D 0.
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2.6.2 Response Tensor for a 1D Pair Plasma

The response tensor for an arbitrary 1D distribution of electrons and positrons
follows from (1.3.7). The distribution of electrons (C) and positrons (�) are
described by 1D distribution functions, g˙.u/, with u D pz=m D �v, � D
.1 � v2/�1=2. The normalization is chosen to be such that one has

npr˙ D
Z
du

g˙.u/
�

D
Z

d3p

.2
/3
f .p?; pz/

�
D
Z

d4p

.2
/4
F˙.p/;

n˙ D
Z
dug˙.u/ D

Z
d3p

.2
/3
f .p?; pz/ D

Z
d4p

.2
/4
� F˙.p/; (2.6.6)

which are the proper number densities and the actual number densities, respectively.
In the 1D case, the response tensor (2.3.9) can be written as

˘��.k/ D
X
˙

�e
2n˙
m

�
1

�



� k

�
Dk

�
D

.ku/2
C 1

.ku/2 �˝2
e

�
.ku/2 g��?

� ku .k�?u� C u�k�?/ � k2?u�u� � i �˝e

�
ku f �� C k

�
Gu� � u�k�G

����

˙
;

(2.6.7)

with

n˙hKi˙ D
Z
du g˙.u/K; (2.6.8)

for any functionK , with � D ˙ for electrons and positrons, respectively.

RPDFs for a 1D Distribution

With ku D �.! � kzv/, the denominators that appear in (2.6.7) can be rewritten
using

.ku/2 D k2z �
2.z � v/2; .ku/2 �˝2

e D k2z �
2.1C y2/.v � zC/.v � z�/; (2.6.9)

with z D !=kz, y D ˝e=kz,

z˙ D z ˙ y.1C y2 � z2/1=2

1C y2
: (2.6.10)

The result may be expressed in terms of three relativistic plasma dispersion
functions (RPDFs), defined by
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W.z/ D
�

1

�3.z � v/2
�
; R.z/ D

�
1

�.z � v/
�
; S.z/ D

�
1

�2.z � v/
�
: (2.6.11)

Dielectric Tensor in Terms of RPDFs

Consider the special case where the distributions of electrons and positrons is the
same except for their number densities, specifically, gC.u/=nC D g�.u/=n�. The
difference between the number densities of electrons and positrons can be included
by re-interpreting the sign � as its average over the two distributions, � D .nC �
n�/=.nC C n�/. The resulting expression for the dielectric tensor is [29]

K1
1 D K2

2 D 1 � !2p

!2
1

1C y2

��
1

�

�
C .z � zC/2R.zC/� .z � z�/2R.z�/

zC � z�

�
;

K3
3 D 1 � !2p

!2

(
z2W.z/C tan2 �

1C y2

"�
1

�

�
C z2CR.zC/� z2�R.z�/

zC � z�

#)
;

K1
2 D i�

!2p

!2
y

1C y2

�
.z � zC/S.zC/� .z � z�/S.z�/

zC � z�

�
;

K1
3 D �!

2
p

!2
1

1C y2

�
.z � zC/zCR.zC/� .z � z�/z�R.z�/

zC � z�

�
;

K2
3 D �i�!

2
p

!2
y tan �

1C y2

�
zCS.zC/� z�S.z�/

zC � z�

�
; (2.6.12)

with K2
1 D �K1

2, K3
1 D K1

3, K2
3 D �K3

2.

Low-Frequency Limit

In the radio emission region of the pulsar magnetosphere, although this region
is poorly determined, the cyclotron frequency is very large compared with radio
frequencies, and the low-frequency approximation to the dielectric tensor is appro-
priate.

At frequencies well below the cyclotron frequency, the approximations y ! 1,
z˙ ! ˙1 lead to simplification to the general form of the response tensor (2.6.12).
With hvi D 0, the RPDFs associated with the cyclotron resonance simplify
according to

R.˙1/ D �h�i; S.˙1/ D �1: (2.6.13)
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In this limit the dielectric tensor (2.6.12) may be approximated by

K1
1 D 1C !2p

!2
k2z

˝2
e

�
z2 h�i � 2z h�vi C ˝

�v2
˛ �
;

K3
3 D 1 � !2p

!2

�
z2W.z/� k2?

˝2
e

˝
�v2

˛ �
;

K1
3 D �!

2
p

!2
k?kz

˝2
e

�
z h�vi � ˝

�v2
˛ �
;

K1
2 D �i� !

2
p

!2
kzc

˝e

�
z � hvi �; K2

3 D i�
!2p

!2
k?c
˝e

hvi : (2.6.14)

In the absence of a streaming motion, hvi D 0, the averages involve the two
parameters

vA D h�i�1=2˝e

!p
; h�v2i D h�i ıv2: (2.6.15)

The parameter vA is interpreted as the Alfvén speed; it generalizes the definition
vA D ˝e=!p for a cold plasma to a relativistic plasma with h�i > 1. The
parameter ıv2 describes the intrinsic spread in velocities; for ıv2 � 1 the spread is
nonrelativistic, and it is highly relativistic for ıv2 
 1.

2.6.3 Specific Distributions for a 1D Electron Gas

Wave dispersion in a pulsar plasma depends on the form of the 1D distribution of
electrons and positrons. However, the wave properties are not particularly sensitive
to the actual form of the distribution function, provided that the electrons are
highly relativistic. The dispersion is sensitive to relative streaming motions between
different distributions, as discussed in � 1.3. The RPDFs are compared here for
several different non-streaming distributions.

1D Jüttner Distribution

A 1D Jüttner distribution is

g.u/ D e���

2K1.�/
;

�
1

�

�
D K0.�/

K1.�/
; h�i D K0.�/CK2.�/

2K1.�/
; (2.6.16)

where two relevant examples of averages are given. The RPDF associated with
dispersion in the parallel direction is

W.z/ D T 0.z; �/
2K1.�/

; T .z; �/ D
Z 1

�1
dv

e���

v � z
: (2.6.17)
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Fig. 2.2 Plots of z2W.z/ and z2R.z/ for a Jüttner distribution with � D 1 (dotted) and � D 2:5

(solid) (From [29], reprinted with permission Cambridge University Press)

The two RPDFs associated with the cyclotron resonance are

R.z/ D 2K0.�/T .z; �/

.1 � z2/2K1.�/
; S.z/ D �1

z

�
T 0.z; �/
2K1.�/

�
: (2.6.18)

The properties of the RPDF T .z; �/ are discussed in � 4.4 of volume 1.
The RPDFs z2W.z/ and z2R.z/ are illustrated in Fig. 2.2 for two mildly relativis-

tic Jüttner distributions.

1D Form of Trubnikov’s Response Tensor

An alternative treatment of a 1D Jüttner distribution involves applying Trubnikov’s
method to evaluate the response tensor for a strictly-parallel distribution. The
distribution function, F.p/ or f .p/, is proportional to ı.p2?/, implying that all
particles havep? D 0. The steps involved in the derivation of the response tensor for
such a distribution with a relativistic thermal distribution for the remaining parallel
motion closely follow the foregoing derivation for an isotropic distribution.

A strictly-parallel Jüttner distribution corresponds to

g.pz/ D n e���

2mK1.�/
D npr e

���

2mK0.�/
: (2.6.19)
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The evaluation of the counterpart of the result (2.4.22) for the response tensor differs
from the isotropic case in that the orders of the Macdonald functions are reduced by
unity. Specifically, (2.4.22) is replaced by

˘��.k/ D q2n�

K1.�/m

Z 1

0

d�



� �
.k2/kT ��.�/ � kˇT

�ˇ.�/k� � k�k˛T ˛�.�/

Ck˛kˇT ˛ˇ.�/g��k
�K1

�
rk.�/

�

rk.�/
C ��

kak.�/
�2
T ��.�/ � kak.�/a�k .�/k˛T

˛�.�/

�kak.�/kˇT �ˇ.�/a�k.�/C k˛kˇT
˛ˇ.�/a

�

k .�/a
�
k.�/

�K2

�
rk.�/

�

r2k.�/

�
; (2.6.20)

with a�k .�/ D g
��

k a�.�/, r2k .�/ D a
�

k .�/ak�.�/. If one separates into k- and ?-
subspaces by writing

T ˛ˇ.�/ D g
˛ˇ

k � C T
˛ˇ

? .�/; (2.6.21)

then T ˛ˇ? .�/, which corresponds to the central four components in (2.3.6), is the
only part that involves trignometric functions.

Various alternative forms of (2.6.20) follow by appealing to the identity (2.4.19),
in this case with ka.�/ reinterpreted as kak.�/.

Water-Bag and Bell Distributions

A water-bag distribution is one in which the distribution function is a constant
between two limits and zero otherwise, so that the distribution function is discon-
tinuous at these limits. In a bell distribution the step functions at the two limits are
replaced by a power-law variation. These distribution functions are of the form

g.u/ D �
u2m � u2

�p
H
�
u2m � u2

�
; (2.6.22)

where H.x/ is the step function, and where the two limits are at u D ˙um. The
water-bag distribution corresponds to p D 0, and p D 1; 2; 3 have been called hard
bell, soft bell and squishy bell, respectively. These distributions have the advantage
that the RPDFs can be evaluated in terms of powers and logarithmic functions
[29, 30]. The argument of the logarithms is .z � vm/=.z C vm/, with um D �mvm,
and this has an imaginary part for �vm < z < vm, where resonance is possible.

The RPDFs z2W.z/ and z2R.z/ are illustrated in Fig. 2.3 for two soft bell
distributions with the same values of h�i as the two Jüttner distributions in Fig. 2.2.
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Fig. 2.3 As for Fig. 2.2 but for a soft bell distribution with um D 0:977098 (dotted) and um D 0:9

(solid) (From [29], reprinted with permission Cambridge University Press)

2.7 Response Tensor for a Synchrotron-Emitting Gas

Highly relativistic electrons in a magnetic field emit and absorb synchrotron radia-
tion. Dispersion is related to dissipation, and the dispersion due to highly relativistic
electrons is related to synchrotron absorption. For a thermal distribution, such
dispersion can be treated using Trubnikov’s response tensor in the limit �� 1 [31].
However, synchrotron-emitting particles typically have power-law energy spectra,
and not thermal spectra. The response tensor for an arbitrary nonthermal distribution
of synchrotron-emitting particles can be evaluated by making the highly relativistic
approximation [32, 33], which involves Airy functions.

2.7.1 Synchrotron Approximation

The synchrotron approximation involves expanding in inverse powers of the Lorentz
factor of the radiating electron.

Method of Stationary Phase

In the synchrotron approximation, most of the emission is strongly beamed in the
forward direction, implying that the difference between the angle of emission and
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1/γ

Fig. 2.4 Radiation from a highly relativistic particle moving in a circle is seen as a sequence of
pulses, one per gyroperiod, by observers whose line of sight is within an angle � 1=� of the plane
of the circle

the pitch angle, j� � ˛j, is of first order in 1=� , cf. Fig. 2.4. An observer at � 
 ˛

receives a pulse of radiation each time the particle’s motion is directly towards
the observer, who can see the particle only for a fraction 
1=� of its orbit each
gyroperiod. Consider the integral over proper time, �, in the expression (2.3.4)
or (2.3.24) for the response tensor. The proper time parameterizes the gyrophase,
and the foregoing argument implies that the dominant contribution to the �-integral
is from a small range of � corresponding to emission in the direction of the observer.
It is appropriate to approximate such an integral using the method of stationary
phase.

The method of stationary phase applies to an integral, over z say, in which the
integrand contains a phase factor, expŒif .z/� say, such that the integral is dominated
by points of stationary phase, where f 0.z/ D df .z/=d z is zero. Assuming only one
stationary phase point, at z D z0, the stationary phase approximation corresponds to

Z
d zG.z/ eif .z/ 
 G.z0/

�
i


f 00.z0/


1=2
eif .z0/; (2.7.1)

where G.z/ is a slowly varying function. The derivation of (2.7.1) involves
expanding in a Taylor series about z D z0, with f 0.z0/ D 0. Only terms up to second
order are retained in the phase f .z/ D f .z0/C 1

2
.z � z0/2f 00.z0/, andG.z/ 
 G.z0/

is regarded as a constant. The resulting integral gives (2.7.1). In the application
considered here, integrals appear in which G.z/ has a zero near z D z0. To evaluate
such integrals one appeals either to Hermite integration or, more simply, to a partial
integration to find

Z
d z

"
.z � z0/2

.z � z0/4

#
eif .z/ 


�
i


f 00.z0/


1=2 " i=f 00.z0/
�3=Œf 00.z0/�2

#
eif .z0/; (2.7.2)

and so on, with integrals of odd powers of z � z0 vanishing.

Synchrotron Approximation to the Response Tensor

The response tensor in the synchrotron limit is obtained by starting either
from (2.7.10), viz.
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˘��.k/ D q2

m

Z
d4p.�/

.2
/4
F.p/

Z 1

0

d� exp
�
ik
�
X.�/� X.� � �/��

� T˛ˇ.�/ ku.�/G˛�
�
k; u.�/

�
ku.� � �/Gˇ�

�
k; u.� � �/�; (2.7.3)

or from the Vlasov form (2.3.24), viz.

˘��.k/ D �iq2
Z
d4p.�/

.2
/4

Z 1

0

d� u�.�/ eikŒX.�/�X.���/�

� ku.� � �/G˛�
�
k; u.� � �/� Pt˛ˇ.� � �/

@F.p/

@pˇ
: (2.7.4)

The phase factor in the integrand is kŒX.�/ � X.� � �/�, with the orbit given by
X�.�/ D x

�
0 C t��.�/u0� . The initial 4-velocity, u�0 includes an arbitrary initial

gyrophase, 	, and X�.�/ involves trignometric functions of both 	 �˝0� and 	 �
˝0.� ��/. The integral over d4p.�/ contains an integral over gyrophase, which can
be written either as an integral over 	 or as an integral over˝0� .

Using (2.1.21) and (2.1.22) one finds

kŒX.�/�X.� � �/� D .ku0/k��k?RŒsin.	� � /� sin.	� � �˝0�/�; (2.7.5)

with 	 D 	0 C˝0� . The points of stationary phase with respect to 	 occur at

cos.	 � � / D cos.	 � � �˝0�/: (2.7.6)

One solution is at 	�� D 1
2
˝0�. There are two solutions each period, and the two

solutions contribute equally. Thus the integral over 	 is approximated by making the
stationary phase approximation for one of these solutions, and multiplying the result
by 2 to take account of the other. After applying the method of stationary phase to
the 	-integral, the phase factor (2.7.5) is approximated by

kŒX.�/ � X.� � �/� D .ku0/k� � 2k?R sin. 1
2
˝0�/: (2.7.7)

Writing k? D jkj sin � , v? D v sin˛, (2.7.7) gives

kŒX.�/ � X.� � �/� D ��Œ.! � jkjv cos.˛ � �/�

�� jkjv sin ˛ sin �Œ� � 2 sin. 1
2
˝0�/�: (2.7.8)

The integral over pitch angle can also be approximated using the method of
stationary phase. The points of stationary phase in the ˛-integral occur at

sin.˛ � �/ D cos˛ sin �

"
1 � 2 sin. 1

2
˝0�/

˝0�

#
: (2.7.9)
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Thus the condition for stationary phase for the ˛-integral can be approximated by

sin.˛ � �/ D 
1; 
1 D .˝0�/
2

24
sin � cos �: (2.7.10)

As for the 	-integral, there are two stationary phase points that contribute equally,
and only one need be retained with the result multiplied by 2.

In evaluating the integrals by the method of stationary phase, it is convenient to
write

y D ˝0�; a D �.! � jkjv/
˝0

; b D � jkjv sin2 �

8˝0

; (2.7.11)

and to change variables to ı	 D 	 � �=2, ı˛ D ˛ � � � 
1. The phase factor
in (2.7.4) reduces to

kŒX.�/ �X.� � �/� D ay C by3

3
C 4by

.ı˛/2

sin2 �
C 4by

sin ˛

sin �
.ı	/2; (2.7.12)

and in the integrand one makes the replacement ˝0� D ı	 C 1
2
y, ˛ D ı˛ C � C


1. The variables y D ˝0�, ı˛ and ı	 are all small quantities of O.��1/. The
correction 
1 is O.��2/.

2.7.2 Expansion About a Point of Stationary Phase

On making the foregoing approximations, one needs to evaluate the slowly varying
functions in the integrand in (2.7.3) or (2.7.4) before performing the integral over �
or y D ˝0�.

It is conventional to describe a distribution of highly relativistic particles in
terms of the energy spectrum, which can be written in terms of Lorentz factors.
LetN.�/d� be the number density of particles in the range � to � C d� , with 	.˛/
the pitch-angle distribution. The normalization conditions are

Z
d� N.�/ D 1;

Z
d cos˛ 	.˛/ D 2: (2.7.13)

The integral over pitch angle is evaluated by the method of stationary phase, and
	.˛/ is evaluated at ˛ D � C ı˛ C 
1, giving

	.˛/ D 	.�/

�
1C ı˛ g.�/

cos �

sin �

�
; sin˛ D sin �

�
1C ı˛

cos �

sin �

�
; (2.7.14)

with g.�/ D tan � 	0.�/=	.�/.
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The contribution to dispersion from the highly relativistic particles is usually of
interest only for relatively high frequency waves, where the waves are transverse to
an excellent approximation. It is convenient to project the response tensor onto the
two transverse 4-vectors

t� D Œ0; t�; t D .cos �; 0;� sin �/; a� D Œ0; a�; a D .0; 1; 0/: (2.7.15)

The components along these 4-vectors are denoted as the t- and a-components,
respectively. For the response tensor in the forward-scattering form (2.3.4) the
following expansions are required:

T ��.�/ D 1
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� �y 1
2
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� 1
2
� y2 �y
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˛ˇ.�/ D jkj2 sin2 �
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6
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kˇT
�ˇ.�/ D jkj sin �

˝0

�� cos � 1
6
y3; 1

2
� y2

�
;

k˛T
˛�.�/ D jkj sin �

˝0

�� cos � 1
6
y3;� 1

2
� y2

�
; (2.7.16)

with y D ˝0�. The matrix representation in (2.7.16) is restricted to the 2D
transverse subspace, corresponding to �; � D t; a, with t�, a�, defined by (2.7.15).
The Vlasov involves a derivative of the distribution function; this gives

ku.�/G˛�
�
k; u.�/

� Pt˛ˇ.�/ @

@pˇ
D Œku.�/ Qu� � k Qu u�.�/�

1

m�
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�Œku.�/ a�.�/ � ka.�/ u�.�/�
1

m�2ˇ2
@

@˛
;

a�.�/ D d

d˛
u�.�/; ka.�/ D � jkjˇ ı˛; (2.7.17)

where only the leading term in the approximate expression for ka.�/ is retained.

2.7.3 Transverse Components of the Response Tensor

There are only three independent transverse components for the response tensor,
and it is convenient to write them in terms of t�� D �0˘

�� , with the 2D
transverse subspace spanned by the 4-vectors t�, a�, defined by (2.7.15). The three
independent components contain a class of integrals that need to be evaluated by the
method of stationary phase. This class is defined by

I .N/.a; b/ D
Z 1

0

dy yN expŒiay C i 1
3
by3�; (2.7.18)

with N an integer.
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The forward-scattering form for the response tensor gives

t��.k/ D �!
2
p0˝0

!
	.�/
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�2ˇ
J ��.a; b/; (2.7.19)

with ˇ ! 1 here. There are three independent components:
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J ta.a; b/ D 1
2
� cos �

˚�
16
9
ia2I .1/.a; b/� 20

9
aI .0/.a; b/�2iI .�1/.a; b/C2i�

C g.�/
�� 4

3
aI .0/.a; b/�2iI .�1/.a; b/Ci 1

3

��
: (2.7.20)

The Vlasov form (2.7.4) leads to

t��.k/ D t
��

.�/.k/C t
��

.˛/.k/;

t��� .k/ D �!
2
p0˝0

!
	.�/

Z
d� �ˇ

d

d�

�
N.�/

�2ˇ

�
h��;

t ta˛ .k/ D !2p0˝0

!
	.�/

Z
d�

N.�/

�
.� 1

2
� cos �/

��g.�/ iI .�1/.a; b/� ; (2.7.21)

with h�� given by

0
BBB@

htt

haa

hta

1
CCCA D

0
BBB@

�aI .�1/.a; b/ � bI .1/.a; b/
�aI .�1/.a; b/� 3bI .1/.a; b/

� 1
2
� cos �

��
2C g.�/

�
iI .�1/.a; b/C 4

3
aI .0/.a; b/� i 4

3
�

1
CCCA : (2.7.22)

The forms (2.7.19) and (2.7.21) are related to each other by a partial integration.
However, the two expressions (2.7.19) and (2.7.21) are not equivalent because
the constant terms in the diagonal components in (2.7.19) are not reproduced by
the partial integration of (2.7.21). This inconsistency reflects a more fundamental
problem in taking the ultrarelativistic limit.

Ultrarelativistic Limit

In the ultrarelativistic limit the gyroradii of the particles become arbitrarily large
and their gyroperiods become arbitrarily long. The particle motions are better
approximated by constant rectilinear motion than by gyromagnetic motion in this
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extreme limit. The inconsistencies that arise in taking the ultrarelativistic limit are
related to this breakdown in the assumption that the motions are gyromagnetic.
One procedure that avoids the inconsistencies is to note that in the extreme limit
the system is effectively unmagnetized, and to use this fact to remove the terms
that cause the inconsistencies. Specifically, in taking the ultrarelativistic limit one
first subtracts the constant terms in (2.7.19) and (2.7.21) that remain in this limit,
ensuring that the remaining terms are well behaved. One then adds the known result
for the response tensor for an unmagnetized plasma to replace the subtracted terms.
This procedure involves separating the response into two parts: the unmagnetized
part and the magnetic correction to it. This separation corresponds to

t��.k/ D t
��
0 .k/C t��mag.k/; (2.7.23)

where �; � D 1; 2 span only the 2D transverse plane. The unmagnetized part
corresponds to t��0 .k/ D !2p0ı

�� at high frequencies, where !p0 is the proper
plasma frequency. The magnetized part, t��mag.k/, in (2.7.23) describes the dispersion
associated with the synchrotron emitting particles. The method developed here gives
t
��
mag.k/ when terms independent of the magnetic field are discarded.

2.7.4 Airy Integral Approximation

The integrals I .n/.a; b/ that appear in (2.7.19) and (2.7.21) may be evaluated in
terms of the Airy functions Ai .z/ and Gi .z/, cf.(̃A.1.21). Identifying z D a=b1=3,
one finds

I .0/.a; b/ D 
b�1=3�Ai .z/C iGi .z/
�
;

I .1/.a; b/ D �i
b�1=3�Ai0 .z/C iGi0 .z/
�
;

I .�1/.a; b/ D i


Z z

0

d z0 �Ai .z0/C iGi .z0/
�
: (2.7.24)

The Airy function Ai .z/ can be represented as a Bessel function of order 1=3, and in
the case of relevance to synchrotron emission these are Macdonald functions. The
relevant representations are

Re I .0/.a; b/ D 1p
3

�a
b

	1=2
K1=3.R/; Im I .1/.a; b/ D 1p

3

a

b
K2=3.R/;

Im I .�1/.a; b/ D � 1p
3

Z 1

R

dt K1=3.t/; R D 2a3=2

3b1=2
: (2.7.25)

These functions appear in the discussion of synchrotron emission and absorption in
� 4.4.
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Response at High Frequencies

The hermitian part of the response involves the function Gi .z/. Approximate forms
of Gi .z/ are available for large and small z. The asymptotic expansion for z 	 1

is given by (A.1.23), and the expansion for z � 1 by (A.1.24). The case of most
interest is high frequencies, corresponding to a 	 1. In this case the asymptotic
expansion gives

I .0/.a; b/ D i

a

�
1C 2b

a3



; I .1/.a; b/ D � 1

a2
; I .�1/.a; b/ D � ln a;

(2.7.26)

with a D !=2˝0� .
The leading terms in the hermitian part of the response tensor in the form (2.7.19)

become

J tt .a; b/ D �2
3

˝0

!
�3 sin2 �; J aa.a; b/ D 7J tt .a; b/;

J ta.a; b/ D � 1
2
i� cos �Œ1C g.�/� ln

�
!

2˝0�



; (2.7.27)

where the logarithmic term is assumed to dominate in t ta.k/. A result similar
to (2.7.27) with (2.7.19) was derived in a different way by Sazonov [32].

Dispersion in a synchrotron-emitting electron gas is determined primarily by the
t t- and aa-components. The natural modes are approximately linearly polarized,
with electric vectors along the t- and a-directions. The circularly polarized compo-
nent can be regarded as a correction of order 1=� .

2.7.5 Power-Law and Jüttner Distributions

Dispersion in a synchrotron-emitting gas is of most interest for a power-law
distribution. It is of interest to compare this with the case of a highly relativistic
Jüttner distribution.

Power-Law Distribution

For present purposes a power-law distribution is defined by

N.�/ D
8<
:
K��a for �1 < � < �2;

0 otherwise;
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K D
8<
:
.a � 1/=.�1�a1 � �1�a2 /�1 for a ¤ 1;

ln.�2=�1/ for a D 1;
(2.7.28)

Inserting (2.7.28) into (2.7.19) with (2.7.27) gives

t��.k/ D !2p0 ı
�� C�t��.k/; (2.7.29)

with ı�� the unit tensor in the 2D subspace, and with

�
�ttt .k/

�taa.k/



D !2p0˝

2
0

!2
2�	.�/ sin2 �

3

 
1

7

!
;

�t ta.k/ D i�

2

!2p0˝0

!
cos �	.�/Œ1C g.�/�

a � 1
a � 2

1

�1
ln

�
!

˝0�1 sin �



;

(2.7.30)

� D

8̂
<̂
ˆ̂:

a � 1
a � 2 �1 for a > 2;

a � 1
2 � a

.�1�a1 � �1�a2 /�1
�

!

˝0 sin �


.2�a/=2
for a < 2;

(2.7.31)

with the proviso that the latter approximation applies only for frequencies
.!=˝0 sin �/1=2�<�2.

Ultrarelativistic Thermal Distribution

Application of the foregoing method to a Jüttner distribution with a highly rela-
tivistic temperature, � � 1, is of formal interest in comparing the method with
Trubnikov’s method.

For a highly relativistic Jüttner distribution one has

N.�/ 
 1

2
�2�3e��� : (2.7.32)

The result (2.7.32) follows from the Jüttner distribution (2.7.28) for � 	 1 and
� � 1, with K2.�/ 
 2=�2 for � � 1.

The resulting expression for the transverse components are of the form (2.7.23),
with the magnetized part, t��mag.k/, having diagonal components

t11mag.k/ D 2!2p0˝
2
0 sin2 �

�2!2
; t22mag.k/ D 7t11mag.k/; (2.7.33)
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and off-diagonal components

t12mag.k/ D �t21mag.k/ D i� cos �
!2p0˝0

!
ln

�
!�

2˝0



: (2.7.34)

Alternatively, the result (2.7.33) and (2.7.34) may be derived by making the ultra-
relativistic approximation in Trubnikov’s response tensor. A relevant approximation
to the function r.�/, defined by (2.4.10), is

r2.�/ D r20 .�/C ır2.�/; r20 .�/ D �2i!��;

ır2.�/ D �!
2 sin2 �

˝2
0

.˝0�/
4

12
; (2.7.35)

where a term �2 is neglected, and with k2z ! !2 cos2 � , k2? ! !2 sin2 � . In
evaluating t��mag.k/ one is to subtract the contribution that is nonzero for B !
0. Inspection of the response tensor (2.4.13) shows that the term proportional
to K2

�
r.�/

�
=r2.�/ has a nonzero contribution for B ! 0, and subtracting it

using (2.7.35) gives

K2

�
r.�/

�

r2.�/
� K2

�
r0.�/

�

r20 .�/
D �ır

2.�/

2

K3

�
r0.�/

�

r30 .�/
: (2.7.36)

The integral over � in (2.4.13) can then be evaluated, either using the identity

Z 1

0

dx x� K�.ax/ D 2��1a���1�
�
1C �C �

2



�

�
1C � � �

2



; (2.7.37)

or by first making the approximation Kn.r0/ 
 2n�1 .n � 1/Š=rn0 for jr0j � 1.
The result (2.7.33) for the diagonal terms is reproduced. For the off-diagonal term,
and integral of the form

R
d� � K2.r0/=r

2
0 appears, and with r20 / � and K2.r0/ 


2=r20 , this integral is logarithmically divergent. The result (2.7.34) is reproduced,
except for the argument of the logarithm. This argument is not well determined: as
in (2.7.30) it effectively depends on a lower energy cutoff, which is ill-defined for a
relativistic thermal distribution.

2.8 Nonlinear Response Tensors

Covariant forms for the quadratic and cubic response tensors may be derived either
for a cold plasma or for an arbitrary distribution of particle by extending the methods
used in � 1.2 and � 2.1, respectively.
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2.8.1 Quadratic Response Tensor for a Cold Plasma

The quadratic response tensor for a cold plasma can be derived from the second
order terms in the expansion (1.2.11) of the induced current, that is, from

J .2/�.k/ D q

�
n u.2/�.k/C n.2/.k/ Qu� C

Z
d�.2/ n.1/.k1/u

.1/�.k2/

�
: (2.8.1)

The first order terms n.1/.k/, u.1/�.k/ are given by (1.2.13) and (1.2.15). The second
order term n.2/.k/ follows from the quadratic terms in (1.2.4),

k Nun.2/.k/ D �
Z
d�.2/ n.1/.k1/ ku.1/.k2/: (2.8.2)

The second order term u.2/�.k/ follows from the quadratic terms in (1.2.5),
which give

u.2/�.k/ D ���.k Qu/
�

�
Z
d�.2/ k2u

.1/.k1/ u.1/�.k2/

� q

m

Z
d�.2/ k1u

.1/.k2/G
��
�
k1; u

.1/.k2/
�
A�.k1/

�
: (2.8.3)

The quadratic response tensor follows by writing (2.8.1) in the form defined
by the second order term in the weak turbulence expansion (1.1.31). One needs
to symmetrize the result over �; k1 $ �; k2, to avoid the result depending on
the details of the calculation. It is convenient to write k0 D �k, so that one has
k
�
0 C k

�
1 C k

�
2 D 0. The result is then symmetric under �; k0 $ �; k1 $ �; k2. The

resulting form is

˘.2/���.k0; k1; k2/ D � q3n

2m2
G˛�.k0; Qu/Gˇ�.k1; Qu/G��.k2; Qu/ f˛ˇ� .k0; k1; k2; Qu/;

(2.8.4)

with

f ˛ˇ� .k0; k1; k2; u/ D �
�
k1�

k0u
��˛.k0u/�

ˇ� .k2u/C k2�

k0u
��˛.k0u/�

�ˇ.k1u/

C k0�

k1u
��ˇ.k1u/�

˛� .k2u/C k0�

k2u
��� .k2u/�

ˇ˛.k1u/

C k1�

k2u
��� .k2u/�

˛ˇ.k0u/C k2�

k1u
��ˇ.k1u/�

�˛.k0u/

�
;

(2.8.5)

where u� D u�k is confined to the 0–3 plane.
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It is straightforward to use the cold plasma approach to derive an expression
for the cubic response tensor. The result (2.8.4) with (2.8.5) for the quadratic
response tensor and the corresponding cubic response tensor may be derived from
the expressions derived below using the forward-scattering method, by assuming a
ı-function distribution of particles.

2.8.2 Higher Order Currents

Using the forward-scattering method (� 2.3.1), the nonlinear response tensors can be
calculated for an arbitrary distribution of particles from the nonlinear terms in the
expansion of the single-particle current.

A general form for the nth order current, which reduces to the linear cur-
rent (2.2.14) for n D 1, is

J .n/�sp .k/ D qnC1

mn

Z
d4k1

.2
/4
� � �
Z

d4kn

.2
/4
e�i.k�k1�����kn/x0

�
X

a;a1;:::;an

ei�.a �a1 1�����an n/ ˇ.n/��1:::�n.a; kI a1; k1I : : : I an; kn/

� 2
ı�.ku/k � .k1u/k � � � � .knu/k � .a � a1 � � � � � an/˝0

�
:

(2.8.6)

The nth order induced current in the plasma due to a single species of particle is
found by multiplying J .n/�sp .k/ by d4x0d4p F.p/, with p D mu, and integrating.
The integral over x0 is trivial, giving .2
/4ı4.k � k1 � � � � � kn/. The integrals
over k1; : : : ; kn combined with this ı-function correspond to the n-fold convolution
integral (1.1.32).

The explicit expression for the integrand in (2.8.6) for n D 2 is

ˇ.2/��1�2.a; kI a1; k1I a2; k2/
D G˛�.a; k; u/G�ˇ�.a1; k1; u/G���.a2; k2; u/f˛ˇ� .a; kI a1; k1I a2; k2I u/;

f ˛ˇ� .a; kI a1; k1I a2; k2I u/ D 1

2

�
k1� �

˛� . Q!/�ˇ� . Q!2/
Q! C k��

�ˇ. Q!1/�˛� . Q!2/
Q!1

C k1��
�� . Q!2/�˛ˇ. Q!/

Q!2 C .�; a1; k1/ $ .�; a2; k2/

�
; (2.8.7)

with Q! D .ku/k � a˝0, Q!n D .knu/k � an˝0, and where the final entry
in (2.8.7) implies three additional terms obtained from those written by making
the interchanges indicated.
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The explicit expressions for n D 3 is

ˇ.3/���� .k0; k1; k2; k3/ D
X

a0Ca1Ca2Ca3D0
e�i�.a0 0Ca1 1Ca2 2Ca3 3/

� G�˛�.a0; k0; u/G�ˇ�.a1; k1; u/G���.a2; k2; u/G�ı� .a3; k3; u/

� f˛ˇ�ı.a0; k0I a1; k1I a2; k2I a3; k3I u/; (2.8.8)

f ˛ˇ�ı.a0; k0I a1; k1I a2; k2I a3; k3I u/

D
�
k1��

�˛. Q!0/gˇ	
Q!0 � k1	�

ˇ˛. Q!0/C k0	�
˛ˇ. Q!1/

Q!0 C Q!1

C k0��
�ˇ. Q!1/g˛	

Q!1


��	. Q!0 C Q!1/

�
�
k3��

�� . Q!2/gı�
Q!2 � k2��

�ı. Q!3/C k3��
ı� . Q!2/

Q!2 C Q!3 C k2��
�ı. Q!3/g� �

Q!3



C .1; �/ $ .2; �/C .1; �/ $ .3; �/

C k0�k0��
˛ˇ. Q!1/��� . Q!2/��ı. Q!3/

Q!2 Q!3 C 11 other terms; (2.8.9)

where C.1; �/ $ .2; �/C .1; �/ $ .3; �/ refers to two other terms obtained from
that written by making the interchanges indicated, and where “11 other terms” refers
to those obtained by completely symmetrizing over .0; �/, .1; �/, .2; �/, .3; �/.

2.8.3 Quadratic Response Tensor for Arbitrary Distribution

The general expression for the quadratic response tensor for an arbitrary distri-
bution, F.p/, of magnetized particles may be written in a form that is closely
analogous to the cold plasma form (2.8.4) with (2.8.5). With k0 D �k, this form is

˘.2/���.k0; k1; k2/ D � q3

2m2

Z
d4p

.2
/4
F.p/

X
a0Ca1Ca2D0

e�i�.a0 0Ca1 1Ca2 2/

� G�˛�.a0; k0; u/G�ˇ�.a1; k1; u/G���.a2; k2; u/f˛ˇ� .a0; k0I a1; k1I a2; k2I u/;

(2.8.10)
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f ˛ˇ� .a0; k0I a1; k1I a2; k2I u/ D �
�
k1��

�˛. Q!0/�ˇ� . Q!2/
Q!0

C k2��
�˛. Q!0/��ˇ. Q!1/

Q!0 C k0��
�ˇ. Q!1/�˛� . Q!2/

Q!1 C k0� �
�� . Q!2/�ˇ˛. Q!1/

Q!2

C k1��
�� . Q!2/�˛ˇ. Q!0/

Q!2 C k2��
�ˇ. Q!1/��˛. Q!0/

Q!1
�
; (2.8.11)

with Q!n D .knu/k � an˝0.
Only the contribution from one species is retained in (2.8.10). Due to the result

being proportional to 1=m2, the contribution of ions to the nonlinear response is
intrinsically small compared with the contribution of electrons or positrons. The
dependence on q3 suggests that electrons and positrons contribute with opposite
sign, but this is only partially the case. Unlike the unmagnetized case, where the
quadratic response tensor for a pure pair plasma (identical distributions of electrons
and positrons) is zero, in the magnetized case there is an additional dependence on
� in the gyrotropic term in ���.!/, specifically, in the term �i�˝0f

�� in (2.1.16).
Even for a pure pair plasma, the gyrotropic terms imply a nonzero quadratic
response.
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Chapter 3
Waves in Magnetized Plasmas

The linear response tensor contains all information on the linear response of a
medium. In particular, it determines the properties of the natural wave modes of
the medium. Magnetized plasmas can support a large variety of different wave
modes. There is no systematic classification of wave modes, leading to a confusing
variety of names. Some modes are given historical names (e.g., Alfvén, Bernstein
and Langmuir waves), some are given names associated with the theory used to
derive them (e.g., cold-plasma, magnetoionic and MHD waves), and many are given
names descriptive of the wave itself (e.g., longitudinal, lower-hybrid and electron-
cyclotron waves). Moreover, there is arbitrariness in the definition of a wave mode:
a single dispersion curve can be interpreted as one mode in one limit and as another
mode in another limit. Even the concept of a wave mode is ill-defined in the presence
of damping (or growth); for example, there are many natural peaks in the spectrum
of fluctuations in a thermal plasma and when a particular peak is to be interpreted
as a natural wave mode is ill-defined. Let the properties of an arbitrary wave mode,
labeled as mode M , be regarded as a function of the independent variable k. A
weakly-damped wave mode is characterized by its dispersion relation, ! D !M .k/,
its polarization vector, eM .k/, the ratio RM.k/ of electric to total energy, and its
absorption coefficient �M.k/. These quantities are frame-dependent, and a choice
of frame (usually the rest frame of the plasma) needs to be made to derive them.

General properties of wave dispersion in a magnetized plasma are discussed in
� 3.1. The theory is applied to a cold plasma in � 3.2 and to an electronic plasma
in � 3.3. Weakly relativistic effects are discussed in � 3.4. Some aspects of wave
dispersion in a pulsar plasma are treated in � 3.5. The weak-anisotropy limit is
discussed in � 3.6.
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3.1 Wave Dispersion

In this section, the formal theory of wave dispersion is summarized. The wave
properties are derived by reducing the covariant formalism to a conventional 3-
tensor approach in the rest frame of the plasma.

3.1.1 Invariant Dispersion Equation

The covariant theory of wave dispersion is based on the wave equation, derived from
the Fourier transform of the covariant form of Maxwell’s equation. Following the
notation used in volume 1, the wave equation is

���.k/A�.k/ D ��0J�ext.k/; (3.1.1)

where the current is separated into an induced part and an extraneous part; the linear
induced current is included on the left hand side of (3.1.1), with

��
�.k/ D k2ı�� � k�k� C t��.k/; t��.k/ D �0˘

��.k/; (3.1.2)

and the extraneous part remains as a source term in (3.1.1). The source term is set to
zero to obtain the homogeneous wave equation, which is to be solved for the wave
properties.

Without the source term, (3.1.1) becomes the homogeneous wave equation,
�
�
�.k/ D 0, which may be interpreted as four simultaneous equations for the

four components of A�.k/. These may be written in matrix form, and then the
condition for a solution to exist is that the determinant of the matrix of coefficients
vanish. However, the gauge-invariance and charge-continuity conditions imply that
A�.k/ / k� is a trivial solution, and that this determinant is identically zero.
Non-trivial solutions are determined by the requirement that the matrix of cofactors
vanish. Let ���.k/ be the matrix of cofactors of���.k/; it is necessarily of the form

���.k/ D �.k/ k�k�; (3.1.3)

where�.k/ is an invariant. The invariant form of the dispersion equation is �.k/D 0.
An explicit form for �.k/ may be obtained in terms of the traces of powers of

t��.k/, defined by (3.1.2). Let the trace of the nth power be denoted t .n/.k/, so that
one has t .1/.k/ D t

�
�.k/, t .2/.k/ D t

�
�.k/t

�
�.k/, and so on. The explicit form is

�.k/ D k4 C k2t .1/.k/C 1

2

n�
t .1/.k/

�2 � t .2/.k/
o

C 1

6k2

n�
t .1/.k/

�3 � 3t.1/.k/t .2/.k/C 2t.3/.k/
o
: (3.1.4)
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A non-trivial solution for A�.k/ requires that one construct the second order
matrix of cofactors. Denoting this by ���˛ˇ.k/, it satisfies

��
�.k/�

��˛ˇ.k/ D �.k/
�
g�˛k�kˇ � g�ˇk�k˛

�
: (3.1.5)

A solution satisfying a specific gauge condition G�A
�.k/ D 0 is found by

projecting onto G�G˛ , and identifying the solution in this gauge with any column
of the matrix representation of G�G˛���˛ˇ.k/. The temporal gauge corresponds to
G� D Œ0; 1�.

Cold Unmagnetized Plasma

The covariant theory is inconvenient for detailed calculations in general cases. To
illustrate this point, consider the simple case of a cold unmagnetized plasma, which
corresponds to �˛ˇ ! g˛ˇ in (1.2.16). The response tensor for a cold unmagnetized
plasma is

t��.k/ D �0˘
��.k/ D �!2p

�
g�� � k� Nu� C k� Nu�

k Nu C k2 Nu� Nu�
.k Nu/2



; (3.1.6)

with !2p D q2n="0m. The traces in (3.1.4) can be evaluated relatively simply in this
case. They are

t .n/.k/ D .�!2p/n
"�

k2

.k Nu/2

n

C 2

#
; (3.1.7)

with n D 1; 2; 3. Then (3.1.4) gives

�.k/ D
 
1 � !2p

.k Nu/2
!
.k2 � !2p/

2: (3.1.8)

The solutions of �.k/ D 0 for an unmagnetized cold plasma are .k Nu/2 D !2p and
two degenerate solutions k2 D !2p . One can construct the second order matrix of
cofactors, e.g. using (2.2.26) of volume 1. On inserting the solution .k Nu/2 D !2p into
the resulting expression for ����� .k/, one can show that this solution corresponds
to a longitudinal wave in the rest frame. Inserting the solution k2 D !2p , ����� .k/
vanishes, due to this solution being degenerate, corresponding to two degenerate
modes which can be shown to be transverse in the rest frame of the plasma. Thus
the covariant theory reproduces results that are well known, but even in this simple
case the covariant theory is unnecessarily cumbersome. In more general cases it is
usually simpler to reduce the covariant theory to a 3-tensor formalism, and use this
for detailed calculations.

A conventional treatment of wave dispersion involves choosing the temporal
gauge,A0.k/ D 0, thereby reducing the wave equation to a set of three simultaneous
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equations. The determinant of the matrix of coefficients gives the dispersion
equation, and a particular solution of it defines a wave mode. The polarization 3-
vector is found by constructing the matrix of cofactors, choosing any column of
it, evaluating the entries using the relevant dispersion relation, and normalizing the
resulting 3-vector to unity.

3-Tensor Form of the Wave Equation

A 3-tensor form for the wave equation is obtained by choosing a specific gauge
and frame. A convenient choice is the temporal gauge, A0.k/ D 0. Only the space
components of the wave equation (3.1.1) are then relevant:

�i
j .k/A

j .k/ D ��0J iext.k/: (3.1.9)

In the rest frame of the plasma, it is convenient to divide both sides of (3.1.9) by !2,
so that it becomes

�
�jkj2
!2

.ıij C 
i
j /CKi
j .k/

�
Aj .k/ D ��0

!2
J iext.k/; (3.1.10)

with κ D k=jkj, and where the equivalent dielectric tensor is defined by (1.2.27).
The use of the mixed tensor components on the left hand side of (3.1.10) is
convenient in that Ki

j corresponds to the conventional 3-tensor components of the
dielectric tensor. For κ in the 1–3 plane, at angle � to B, one has

κ D .sin �; 0; cos �/; 
i
j D �
0
@

sin2 � 0 sin � cos �
0 0 0

sin � cos � 0 cos2 �

1
A : (3.1.11)

The homogeneous wave equation follows from (3.1.10) by setting the source
term to zero. The condition for a solution to exist is that the determinant of the 3�3
matrix be set to zero. This determinant is equal to �.k/=!6, where �.k/ D 0 is the
dispersion equation in the covariant theory. Introducing the refractive index, which
is n D jkjc=! in ordinary units, and choosing κ as in (3.1.11), one has

�.k/ D !6

ˇ̌
ˇ̌
ˇ̌

�n2 cos2 � CK1
1.k/ K1

2.k/ n2 sin � cos � CK1
3.k/

K2
1.k/ �n2 CK2

2.k/ K2
3.k/

n2 sin � cos � CK3
1.k/ K3

2.k/ �n2 sin2 � CK3
3.k/

ˇ̌
ˇ̌
ˇ̌ :

(3.1.12)

As shown in � 2.2.4 of volume 1, (3.1.12) is equivalent to

�.k/ D !6
˚
n4KL.k/ � n2ŒKL.k/K1.k/ �KL

2 .k/�C det ŒKi
j .k/�

�
; (3.1.13)
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with K1.k/ D Ks
s.k/ the trace of the dielectric tensor, KL.k/ D �
i
j Ki

j .k/

its longitudinal part, KL
2 .k/ D �
i
j Ki

s.k/K
s
j .k/ the longitudinal part of its

square, and det ŒKi
j .k/� its determinant.

3.1.2 Polarization 3-Vector

In the covariant theory of wave dispersion (� 2.3 of volume 1), the condition for a
solution to exist is that the dispersion equation, �.k/ D 0, be satisfied. Let k� D k

�
M

be the solution for the mode M , with k�M D Œ!M .k/;k� when one chooses k as
the independent variable and ! as the dependent variable. Then one can solve the
wave equation for A�.kM /. The amplitude, phase and gauge are all arbitrary. The
polarization vector is defined by this solution with appropriately chosen amplitude,
phase and gauge.

For �.k/ D 0, the second order matrix of cofactors is of rank 2 implying that
it can be expressed in terms of two 4-vectors. These 4-vectors are k�M and the
polarization 4-vector e�M ..k/. The symmetry properties��˛�ˇ D ��˛��ˇ D ���˛ˇ�
imply

��˛�ˇ.kM / / �
e
�
M .k/k

�
M � e�M.k/k

�
M

� h
e˛M .k/k

ˇ
M � e

ˇ
M .k/k

˛
M

i�
: (3.1.14)

One can identify the polarization vector in the arbitrary G-gauge, with e�MG� D 0

by definition, by contracting (3.1.14) with G˛Gˇ . This gives

e
�
M .k/e

��
M .k/ / G˛Gˇ�

�˛�ˇ.kM /: (3.1.15)

The temporal gauge, which corresponds to G� D Œ1; 0�, is the only choice that
allows a simple normalization in general. It implies e�M .k/ D Œ0; eM.k/� allowing
the normalization e�M .k/eM�.k/ D �jeM.k/j2 D �1. With this choice, one may
use (3.1.15) to identify

�i0j 0.kM / D ��0s0s.kM / eiM .k/e�
Mj : (3.1.16)

The tensor (3.1.14) can then be written as

���˛ˇ.kM / D ��
0�
0� .kM /

!2M .k/

�
e
�
M .k/k

�
M � e�M .k/k

�
M

� h
e˛M .k/k

ˇ
M � eˇM .k/k˛M

i�
:

(3.1.17)

A specific form for �0i 0j is given by (2.2.35) of volume 1:

�0i 0j D n4
i
j � n2.
i
j K1 C ıij K
L � 
i
rK

r
j � 
j 
sKi

s/

C1

2
ıij Œ.K1/

2 �K2�CKi
s K

s
j �K1K

i
j : (3.1.18)
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On inserting the dispersion relation for mode M into (3.1.18), the result is
proportional to the outer product eiM e

�
Mj , and hence may be used to construct eM .

This is equivalent to using a 3-tensor formalism to construct eM .
With the choice of the temporal gauge, and with jeM .k/j2 D 1, the gauge and

normalization of the solution for the 4-potential, A�.kM / / e
�
M .k/, are specified,

but the phase remains arbitrary. A unique choice for the phase is possible due to
the Onsager relations. For k, b in the 1–3 plane, the Onsager relations imply that
the 2-component is out of phase with the 1- and 3-components, allowing one to
choose the phase by specifying that the 1- and 3-components are real, and that the
2-component is imaginary. The 3-polarization vector, chosen in this way, can be
written in the form

eM D LMκ C TM t C ia

.L2M C T 2M C 1/1=2
; (3.1.19)

with t; a defined by (1.1.25). For the specific choice of coordinate axes indicated,
one has

κ D .sin �; 0; cos �/; t D .cos �; 0 � sin �/; a D .0; 1; 0/: (3.1.20)

The parameter TM is the axial ratio of the polarization ellipse for modeM ; the sign
of TM determines the handedness of the polarization, in a screw sense relative to κ,
with TM > 0 and TM < 0 corresponding to right and left hand, respectively.

3.1.3 Ratio of Electric to Total Energy

The ratio of electric to total energy, RM.k/, appears naturally in the theory of
emission and absorption processes in plasmas. Physically, this may be attributed
to the total energy in waves in the mode M consisting of three parts, electric,
magnetic and induced-particle kinetic energies. Only the electric part is involved in
the work done by a current in an emission or absorption process. RM.k/ is related
to �0s0s.kM / which appears naturally in the normalization of the polarization vector
through (3.1.16). The specific relation is

RM.k/ D �0s0s.k/

!@�.k/=@!

ˇ̌
ˇ̌
kDkM

: (3.1.21)

Several alternative forms for RM.k/ are derived in � 2.3 of volume 1. One of
these is

ŒRM .k/�
�1 D

h
2 � 1

"0!

@

@!
˘M.k/

i ˇ̌
ˇ
!D!M

; ˘M.k/ D e�
M�eM�˘

��.kM /;

(3.1.22)

where only the hermitian part of ˘��.k/ is to be retained. In terms of the dielectric
tensor, (3.1.22) becomes
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ŒRM .k/�
�1 D 1

!

@

@!
Œ!2KM.k/�

ˇ̌
ˇ̌
!D!M

; KM.k/ D �e�
Mie

j
MK

Hi
j .k/; (3.1.23)

whereH denotes the hermitian part. For a medium that is not spatially dispersive, a
further alternative form is

ŒRM .k/�
�1 D 2Œ1 � jκ � eM j2�nM .!;κ/ @

@!
Œ!nM .!;κ/�; (3.1.24)

where nM.!;κ/ is the refractive index for the mode M , found by re-expressing
jkj=!M.k/ as a function of independent variable ! and κ D k=jkj.

3.1.4 Absorption Coefficient

The foregoing theory of wave dispersion neglects dissipation. In effect, ˘��.k/

is interpreted as the hermitian part of the tensor. The inclusion of the antihermitian
part,˘A��.k/, leads to damping of the waves. In this context, damping also includes
growth, interpreted as negative damping. Implicit in the approach is that the waves
are weakly damped, implying that the damping can be included as a perturbation.
The damping can then be described by a single parameter, called the absorption
coefficient, �M .k/.

As discussed in � 2.4 of volume 1, the inclusion of dissipation allows one to
identify the total energy in waves, and this is implicit in the identification ofRM.k/.
The procedure is to calculate the rate work is done by the current associated with the
dissipation, and to identify this with the rate at which the total energy in the waves
changes, allowing the total energy to be identified. The calculation gives the rate,
Q
�
M.k/, that 4-momentum is transferred to the waves as

Q
�
M.k/ D �2i RM .k/NM.k/

"0!M .k/
k
�
M ˘

A
M.kM /; (3.1.25)

˘A
M.kM/ D e�

M˛.k/eMˇ.k/˘
A˛ˇ.kM /; (3.1.26)

where ˘A
M.kM / is an imaginary quantity. The power Q0

M.k/ causes the energy
WM.k/ to vary exponentially. If this variation is purely temporal, the variation is
described by a factor expŒ��M .k/t�. The absorption coefficient is

�M .k/ D �Q
0
M.k/

WM.k/
D 2i

RM.k/

"0!M .k/
˘A
M.kM /: (3.1.27)

When the response is described in terms of the dielectric tensor, the result (3.1.27)
translates into

�M .k/ D 2i RM.k/ !M .k/K
A
M.kM /; K

A
M.k/ D �e�

Mi.k/e
j
M .k/K

Ai
j .kM /:

(3.1.28)
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Damping can occur in both time and space, depending on the boundary condition.
Damping is purely temporal (in a given frame) if the waves are uniformly excited
everywhere initially, and the damping is purely spatial if there is a time-independent
point source for the waves. More generally, a mixture of temporal and spatial
damping occurs, and this can be described in terms of an imaginary part, Im k�M ,
of the wave 4-vector, such that the wave amplitude varies as expŒIm k�Mx��. The
wave energy, which is proportional to the square of the amplitude, varies as
exp Œ2 Im k�Mx��. Temporal and spatial damping are related by

Im!M � Im fkg � vgM .k/ D � 1
2
�M .k/; vgM.k/ D @!M .k/

@k
; (3.1.29)

where vgM.k/ is the group velocity for waves in the mode M . The weak-damping
condition requires that the damping be weak in time, j�M .k/j � !M.k/, and in
space. The validity of these requirements can usually be checked only a posteriori.

3.2 Waves in Cool Electron-Ion Plasmas

The simplest model for wave dispersion in a magnetized plasma is one consisting
of electrons and positively charged ions in which the thermal motions of all
particles are neglected, called a cold plasma. The cold-plasma wave modes are
of interest both in themselves, and as the basis for classification of waves in a
magnetized plasma more generally. The properties of the cold plasma wave modes
are summarized in this section. Thermal modifications are included in the low-
frequency limit, leading to three MHD-like modes. A more detailed discussion of
waves in a cold electronic plasma is given in � 3.3.

3.2.1 Cold Plasma Dispersion Equation

The dispersion equation, �.k/ D 0 with �.k/ given by (3.1.13), reproduces a
standard form [1, 2] for the cold plasma dispersion equation. This form can be
derived directly from the homogeneous wave equation in the form�i

j .k/A
j .k/D 0,

with

�i
j D

0
@
S � n2 cos2 � �iD n2 sin � cos �

iD S � n2 0

n2 sin � cos � 0 P � n2 sin2 �

1
A ; (3.2.1)

where arguments are omitted. Setting the determinant of �i
j to zero gives the cold

plasma dispersion equation

An4 � Bn2 C C D 0; (3.2.2)
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with the coefficients given by

A D S sin2 � C P cos2 �; B D .S2 �D2/ sin2 � C PS.1C cos2 �/;

C D P.S2 �D2/: (3.2.3)

With the dependent variable chosen to be n2, the dispersion equation (3.2.2) is a
quadratic equation for n2, and the two solutions are

n2 D n2˙ D B ˙ F

2A
; F D �

B2 � 4AC
�1=2

; (3.2.4)

where the ˙ labeling is arbitrary.
The solutions (3.2.4) correspond to propagating waves only for n2 > 0. In

principle, n2 < 0 can be due either to imaginary ! for real k, or imaginary k for
real !, and only the latter occurs in a cold plasma. Regions with n2 < 0 corresponds
to evanescence: an evanescent wave oscillates in time and decays exponentially in
space.

Polarization Vector

The polarization vector written in the form (3.1.19) involves the parameters
LM; TM . Explicit expressions for these are found using the matrix of cofactors,
�j i , of �i

j . One sets n2 D n2M , with M D ˙, in any of the columns of �ij and
normalizes the result appropriately. Choosing the middle column, �i 2, gives

LM D .P � n2M /D sin �

An2M � PS ; TM D DP cos �

An2M � PS : (3.2.5)

The parameter TM is the axial ratio of the polarization ellipse, and the two modes are
orthogonal in the sense that their polarization ellipses are orthogonal, TCT� D �1.
Except for special cases, cold plasma waves have a nonzero longitudinal component,
described by LM . The polarization vectors themselves are not orthogonal, with e�̇ �
e� ¤ 0 due to the longitudinal parts.

The expression (3.2.5) for the axial ratio implies that 1=T is a linear function of
n2. It follows that because n2 satisfies a quadratic equation, 1=T and hence T also
satisfy quadratic equations. For some purposes it is convenient to choose T as the
independent variable in place of n2. One then solves the quadratic equation

T 2 � .PS � S2 CD2/ sin2 �

PD cos �
T � 1 D 0; (3.2.6)
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for T D T˙. The solutions are

T˙ D .PS � S2 CD2/ sin2 � ˙ F

2PD cos �
D �2PD cos �

.PS � S2 CD2/ sin2 � � F
;

F 2 D .PS � S2 CD2/2 sin4 � C 4P 2D2 cos2 �: (3.2.7)

The solutions for n2 are then found by inverting (3.2.5) to find n2M and LM in terms
of TM . Three superficially different but equivalent relations between n2 and T can
be found by choosing each of the three columns of the matrix of cofactors, �ij .
Choosing j D 1; 2; 3, constructing T as a function of n2 and inverting to find n2 as
a function of T gives

n2M D P
S cos � CDTM

P cos � CDTM sin2 �
D P

A

�
S C D cos �

TM



D S2 �D2

S �DTM cos �
;

(3.2.8)
respectively. Two forms of the resulting relation between L and T are

LM D sin �

A
Œ.P � S/TM cos � �D� D sin �

P

.PS � S2 CD2/TM cos � � PD
S �DTM cos �

:

(3.2.9)

3.2.2 Parallel and Perpendicular Propagation

In the limit of parallel propagation, sin � D 0, the wave properties simplify. The
dispersion equation (3.2.2) with (3.2.3) reduces toP Œ.n2�S/2�D2� D 0 for sin � D
0. The solution P D 0 corresponds to longitudinal oscillations at ! D !p , and
the other two solutions correspond to oppositely circularly polarized modes. This
is a general feature of parallel propagation in an arbitrary magnetized plasma: the
polarization of the modes for parallel propagation is either longitudinal or transverse
and circular. The solutions of .n2 � S/2 �D2 D 0 may be written n2 D R˙, with
R˙ given by (1.2.31).

The handedness of the circular polarization of the wave modes is described by
the sign of the axial ratio, with T > 0 for right-hand polarization. The wave modes
of a cold plasma are affected by the sense in which particles gyrate, and this is
determined by a screw sense relative to the direction of the magnetic field; electrons
spiral in a right-hand sense with this convention. The cold plasma mode that has
a resonance at ! D ˝˛, for species ˛, has a handedness in this sense determined
by the sign of the charge of species ˛, being right-hand for electrons and left-hand
for ions. The two conventions for handedness coincide when the angle, � , between
κ and b is acute and are opposite when � is obtuse, that is, for cos � > 0 and
cos � < 0, respectively.
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Fig. 3.1 Schematic illustration of the dispersion curves for nearly parallel propagating modes. (a)
For two modes labeled 0 and 1, near the cross-over point: the solid curves are for � D 0 and light
dashed curves show how the curves reconnect for � ¤ 0 into two modes labeled C and �. (b) For
three modes, labeled 0, 1 and 2, with the dashed curves defining three reconnected modes labeled
C, i and �

A subtle point is that the solutions for the wave properties in the limit of parallel
propagation are not the same as the limit for parallel propagation of the solutions
for oblique propagation. That is, if one first sets sin � D 0 and solves for the wave
modes, one gets a different labeling of the modes than is obtained by solving for
sin � ¤ 0 and taking the limit sin � ! 0. The solutions for sin � D 0 cross each
other, at a number of points, depending on the number of ionic species, but the
dispersion curves for sin � ¤ 0 never cross. One such crossing occurs at the plasma
frequency, where P changes sign. In a cold plasma with multiple ion species, R�
has resonances at each of the ion cyclotron frequencies, where it changes sign by
passing through infinity; there are solutions of RC D R�, implying D D 0 in
between the cyclotron frequencies. The actual solutions for sin � ! 0, deviate away
from the crossing point, as illustrated schematically in Fig. 3.1.

For perpendicular propagation, cos � D 0, the solutions of the dispersion
equation (3.2.2) reduce to n2 D P , n2 D .S2 � D2/=S . The fact that the solution
n2 D P does not depend on the magnetic field led to the mode being called
‘ordinary’, with the other mode being called ‘extraordinary’ in the context of a cold
electron gas. These names continue to be used in connection with the magnetoionic
modes.

3.2.3 Cutoffs and Resonances

A cutoff is defined as a zero of refractive index. The dispersion equation in the
form (3.2.2) implies that cutoff frequencies are determined by C=A D 0, which is
equivalent to C D 0. (One can have A ! 1 due to S ! 1, but this also implies
C ! 1 and C=A ! 1.) With C D P.S2 � D2/, cutoffs occur at P D 0 and
R˙ D 0.
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A resonance (in a wave modes) is defined by n2 ! 1. Resonances occur in
cold plasma theory at A=C D 0, and can be due either to A D 0 or to C ! 1.
The resonances corresponding to A D 0 depend on angle, and for perpendicular
propagation, � ! 
=2, they define natural frequencies of the plasma called hybrid
frequencies. The resonances corresponding to C ! 1 are cyclotron resonances,
with either RC ! 1 or R� ! 1, due to ! ! ˝˛ for species ˛. As a
resonance is approached, the phase speed of a wave tends to zero, and thermal
corrections become important. Thermal modifications to the hermitian part of the
response tensor invalidate the cold plasma approximation, and the antihermitian
part becomes important, leading to absorption of the waves. An exception is for
perpendicular propagation; this is due to thermal corrections associated with gyro-
resonances appearing in terms of the form k2z V

2=!2, where V is the thermal
speed, so that there is no gyromagnetic absorption at perpendicular propagation
(provided relativistic effects are neglected). Thermally modified waves near the
parallel cyclotron resonances are called parallel cyclotron resonant waves. There
is one such resonant wave mode for each species.

Cutoffs and resonance separate the cold plasma modes into distinct branches.
Each branch is bounded from below by a cutoff and from above by a resonance.
Exceptions are the two lowest frequency branches, which extend down to ! D 0,
and the two highest frequency branches that extend to arbitrarily large !.

In the presence of inhomogeneity, waves are refracted away from the direction of
decreasing refractive index and towards the direction of increasing refractive index.
Hence they refract away from a cutoff, and towards a resonance, where resonant
absorption becomes important.

3.2.4 Hybrid Waves

For perpendicular propagation, cos � D 0, the condition A D 0 for a resonance
reduces to S D 0. For an electron-ion plasma, S D 0 implies

1 � !2p

!2 �˝2
e

�
X
i

!2pi

!2 �˝2
i

D 0; (3.2.10)

where the sum is over all ionic species, with the i th species having plasma frequency
!pi and cyclotron frequency ˝i . The upper-hybrid (UH) frequency is the solution
of (3.2.10) found by neglecting the ions:

!2UH D !2p C˝2
e : (3.2.11)

The lower-hybrid (LH) frequency is found by assuming !2 � ˝2
e . When there is

only one ionic species present, S D 0 gives
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!2LH D ˝2
i C !2pi˝

2
e

!2UH

: (3.2.12)

In a multi-ion plasma there are further hybrid frequencies between the ion-cyclotron
resonances.

Upper-Hybrid Waves

For oblique propagation, the condition A D 0 for a resonance can be solved for
the resonant frequency, !, as a function of � . When the contribution of the ions is
neglected there are two such solutions. Writing these two resonant frequencies as
!˙.�/, one finds

!2˙.�/ D 1
2
.!2p C˝2

e /˙ 1
2

h
.!2p C˝2

e /
2 � 4!2p˝

2
e cos2 �

i1=2
: (3.2.13)

The solution !C.�/ is equal to !UH at � D 
=2; the frequency decreases
with increasing cos2 � , and approaches the maximum of !p and ˝e for parallel
propagation. The solution !�.�/ gives zero for � D 
=2, and this is replaced
by !LH when the contribution of the ions is included. The frequency !�.�/
increases with increasing cos2 � , and approaches the minimum of !p and ˝e for
parallel propagation. These solutions are referred to as upper- and lower-hybrid
waves, respectively. In the cold plasma approximation, both modes are longitudinal.
However, thermal corrections need to be considered for both, and electromagnetic
corrections become significant away from the resonance.

Lower-Hybrid Waves

Lower-hybrid waves are of particular interest in connection with instabilities that
can couple electrons and ions together. The generic feature that allows this coupling
is that lower-hybrid waves can be driven unstable by a nonthermal distribution of
ions, with an anisotropic or ring-type distribution for example, with the waves being
(Landau) damped by nonthermal electrons, leading to acceleration of the electrons.

A variety of approximate dispersion relations for lower-hybrid waves are given
in the literature. A recent example is ! D !LH.k/ with [3]

!LH.k/ D 1C mi

2me

cos2 � � !2p

2jkj2c2 C
�
3

2

Ti

Te
C 3

8


 jkj2V 2
e

˝2
e

: (3.2.14)

The terms on the right hand side of (3.2.14) are corrections due to non-
perpendicular, non-electrostatic and ion and electron thermal effects, respectively.
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3.2.5 Low-Frequency Cold-Plasma Waves

The contribution of the ions to wave dispersion is negligible at high frequencies but
it becomes important at low frequencies, comparable with or below the cyclotron
frequency of ions. In the low-frequency limit one has ! � !p , corresponding
to P large and negative. The appropriate limit of cold plasma theory is found by
expanding in powers of 1=P . To lowest order (3.2.7) gives

T˙ D S sin2 � ˙ ŒS2 sin4 � C 4D2 cos2 ��1=2

2D cos �
; (3.2.15)

where the ˙ labeling is arbitrary. To the same order (3.2.8) gives

n2 D 1

cos2 �

�
S C D cos �

T



D S2 �D2

S �DT cos �
; (3.2.16)

and L D T tan � .
Relevant sums over the ionic species give

X
i

!2pi

˝2
i

D c2

v2A
;

X
i

!2pi

˝i

D !2p

˝e

; (3.2.17)

where the inertia of the electrons is neglected in the Alfvén speed, vA, and where
the latter condition follows from charge neutrality. One has (in ordinary units)

S D 1C c2

v2A
C
X
i

!2pi!
2

˝2
i .˝

2
i � !2/

; D D �
X
i

!2pi!

˝i .˝
2
i � !2/ : (3.2.18)

At frequencies ! � ˝i one has D � S , and a further approximation involves
expanding in powers of D=S .

The two low-frequency branches of the cold plasma modes are counterparts of
two MHD wave modes, with the C mode corresponding to the Alfvén mode and
the � mode to the fast magnetoacoustic mode. (There is no counterpart of a sound
wave in a cold plasma.) The solution for the Alfvén (A) mode corresponds to

n2A D S

cos2 �
C D2 cos2 �

S sin2 �
; TA D S sin2 �

D cos �
; LA D TA tan �: (3.2.19)

The solution for the magnetoacoustic (m) mode corresponds to

n2m D S � D2

S sin2 �
; Tm D �D cos �

S sin2 �
; Lm D Tm tan �: (3.2.20)
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These reduce to the MHD modes (with the sound speed neglected, cs=vA ! 0) in
the limit ! ! 0, corresponding toD D 0. The modification to the MHD dispersion
relations for !=˝i ¤ 0 becomes substantial as the ion cyclotron frequency is
approached. This modifies the Alfvén mode, which becomes a parallel ion-cyclotron
mode. The fast mode does not encounter an ion-cyclotron resonance, and evolves
into the whistler mode as the frequency increases to above the ion-cyclotron range.

3.2.6 Inertial and Kinetic Alfvén Waves

The approximation P ! 1 made in deriving (3.2.19) and (3.2.20) leads to both
modes having zero parallel electric field, b � eM D 0. Zero parallel electric field is
consistent with ideal MHD, which requires E � b D 0. A nonzero parallel electric
field arises when the assumption P ! 1 is relaxed. For Alfvén waves, b � eA ¤ 0

can arise from either inertial effects or kinetic effects.
The properties of inertial Alfvén waves can be found by expanding cold plasma

theory in powers of 1=P and retaining terms of first order in 1=P . The simplest
relevant approximation corresponds to setting D D 0, and then the dispersion
relation for the Aflvén mode becomes n2 D PS=A. With (ordinary units) S D
c2=v2A and P D �!2p=!2, 1=n2 D A=PS corresponds to (ordinary units)

!2=jkj2c2 D .v2A=c
2/ cos2 � � .!2=!2p/ sin2 � . This gives the dispersion relation

for inertial Aflvén waves (IAWs)

!2IAW 
 k2z v
2
A

1C k2?�2e
; (3.2.21)

where �e D c=!p (ordinary units) is the skin depth. The non-zero parallel
component of the polarization vector can be found by noting that the generic
form (3.1.19) for the polarization implies that the ratio of the z to x components
of the polarization vector is .LM cos � � TM sin �/=.LM sin � C TM cos �/. In the
approximationD ! 0, the relation (3.2.9) between LM and TM implies

ez

ex
D � S

P
tan � D k2z�

2
e

1C k2?�2e
tan �; (3.2.22)

where (3.2.21) is used.
Thermal motions are neglected in the cold plasma approximation, and the

approximation is valid only if the phase speed of the waves is much greater than
the thermal speed. For Alfvén waves this requires that the Alfvén speed be much
greater than the thermal speed of electrons. When this inequality is reversed, the
longitudinal response of the unmagnetized electrons changes fromKL D 1�!2p=!2
to KL D 1 C 1=jkj2�2De. For magnetized electrons the electronic contribution to
K3

3 changes from �!2p=!2 at high phase speed to 1=k2z�
2
De at low phase speed,
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with �De D Ve=!p. When this modification is included in deriving the properties
of the waves they are called kinetic Alfvén waves (KAWs). The form of these
modifications can be identified by repeating the derivation for IAWs withP replaced
by 1=k2z�

2
De 	 1. This gives the dispersion relation

!2KAW 
 k2z v
2
A.1C k2?R2g/; (3.2.23)

with R2g D �2Dec
2=v2A. The corresponding ratio of the z to x components of the

polarization vector for KAWs is

ez

ex
D �k2zR2g tan �: (3.2.24)

The approximation made in (3.2.23) and (3.2.24) involves including only one
thermal effect: a modification of K3

3 for phase speed less than Ve. Two other
thermal effects are of comparable order and need to be considered in a more
detailed treatment. One is a nonzero contribution to K2

3 D �K3
2, which is

included in the treatment of MHD-like waves below. The other is a nonzero thermal
gyroradius, Vi=˝i for the ions. This is relevant because R2g in (3.2.23) is equal
to Te=Ti times V 2

i =˝
2
i , and V 2

i =˝
2
i is clearly of the same order. The thermal

motion of the ions was included in an early treatment of KAWs [4] which gave
R2g D .V 2

i =˝
2
i /.Te=Ti C 3=4/.

3.2.7 MHD-Like Waves

The three MHD waves, discussed in � 1.4, include the effect of thermal motions
through a nonzero pressure, giving the (adiabatic) sound speed (1.4.33) which
corresponds to c2s D �P=� in the nonrelativistic case. In an unmagnetized
collisionless plasma, sound-like waves exist for phase speeds between the ion and
electron thermal speeds. The longitudinal response can then be approximated by
KL D 1 � !2pi =!

2 C 1=jkj2�2De, with �De D Ve=!p . The solution !s.k/ D
jkj2v2s =.1 C jkj2�2De/, with v2s D !2pi�

2
De , becomes sound like for jkj2�2De � 1.

These waves are called ion acoustic or ion sound waves. Analogous waves exist in
a magnetized plasma, leading to three MHD-like modes with the ion sound speed,
vs , playing the role of the sound speed.

An approximate form of the dielectric tensor that applies in the MHD-like limit
is written down in (2.5.19). For !2 � ˝2

i , further approximation to (2.5.19) gives
(ordinary units)

Ki
j .k/ D c2

v2A

0
BBBBB@

1 i
!

˝i

0

�i !
˝i

1 �i ˝i

!
tan �

0 i
˝i

!
tan � �˝

2
i

!2

�
1 � c2

n2v2s cos2 �




1
CCCCCA
: (3.2.25)
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The approximations made in deriving (3.2.25) include assuming that the ions are
cold and unmagnetized. The final entry c2=n2v2s cos2 � arises from approximating
the response of the electrons 1=k2z�

2
De, rather than �!2p=!2 in the cold plasma limit.

In solving for the wave properties, it is convenient to introduceN2 D jkj2v2A=!2
and to write the wave equation as �i

j e
j D 0 with

�i
j D c2

v2A

0
BBBBB@

1 �N2 cos2 � i
!

˝i

N 2 sin � cos �

�i !
˝i

1 �N2 �i ˝i

!
tan �

N 2 sin � cos � i
˝i

!
tan � �˝

2
i

!2

�
1 � v2A

v2sN
2 cos2 �



�N2 sin2 �

1
CCCCCA
:

(3.2.26)

To lowest order in !2=˝2
i , setting the determinant of �i

j to zero gives the
dispersion equation

.1 �N2 cos2 �/

��
1 � v2A

v2sN
2 cos2 �



.1 �N2/C tan2 �

�
D 0: (3.2.27)

The solution N2 cos2 � D 1 corresponds to !2 D jkj2v2A and is the Alfvén mode.
The other factor in (3.2.27) has solutions

!2 D jkj2v2˙; v2˙ D 1
2
.v2A C v2s /˙ 1

2
Œ.v2A C v2s /

2 � 4v2Av2s cos2 ��1=2: (3.2.28)

The dispersion relations (3.2.28) are analogous to those for the fast and slow MHD
waves, (1.4.36), with the sound speed replaced by the ion sound speed.

A perturbation expansion in !2=˝2
i gives a correction to the dispersion relation

for Alfvén waves

1 �N2 cos2 � D � !
2

˝2
i

cot2 �

�
1 � v2s

v2A
sec4 �



: (3.2.29)

This dispersion relation is similar to (3.2.23), but the angular dependence is not the
same as in (3.2.23). This is due to the inclusion of the K2

3 D �K3
2 components in

the MHD-like theory.
The polarization vectors for the MHD-like modes can be found by constructing

the matrix of cofactors, �i
j , using (3.2.26), inserting the dispersion relation in any

of the columns, and normalizing to unity. For the Alfvén mode one finds, for !2 �
˝2
i .v

2
A=v

2
s / tan2 � ,

eA D
�
1;�i !

˝i

cot2 �;� !
2

˝2
i

v2s

v2A

1

cos � sin �



; (3.2.30)
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where the y- and z-components are small corrections to eA D .1; 0; 0/. The ratio of
ez=ex is similar in form to (3.2.24) but is not the same because of the inclusion of
theK2

3 D �K3
2 components. The polarization vectors for the fast and slow modes

for v2A 	 v2s and ! � ˝i are em D .0; i; 0/ and es D κ D .sin �; 0; cos �/, and
the lowest order corrections give

em D
�
!

˝i

1

sin2 �
; i;

!

˝i

v2s

v2A
sin � cos �



;

es D
�

sin �;�i ˝i

!

v2s

v2A
sin � cos2 �; cos �



: (3.2.31)

In this approximation the ratio of electric to total energy can be approximated by

RA 
 v2A=2c
2 
 Rm;

Rs 
 .v2A=2c
2/.!2=˝2

i cos2 �/Œ1C .˝2
i =!

2/.v4s =v
4
A/ sin2 � cos2 ��:

Landau damping by electrons is the most important damping mechanism for the
MHD-like waves. The antihermitian part of the response tensor is given by (2.5.20)
with the only nonzero components given by (2.5.21). This leads to absorption
coefficients

�A D !

�



2
Zi
me

mi


1=2
vs

vA

!2

˝2
i

.tan2 � C cot2 �/;

�m D !

�



2
Zi
me

mi


1=2
vs

vA

sin2 �

j cos � j ; �s D !

�



2
Zi
me

mi


1=2
; (3.2.32)

where Zie is the ionic charge. At low frequencies, ! � ˝i , the Alfvén mode is
much more weakly damped than the other two modes.

3.3 Waves in Cold Electronic Plasmas

At frequencies well above the ion plasma and ion cyclotron frequencies, the
contribution of ions to dispersion in a plasma can be neglected in comparison with
the contribution of the electrons. The magnetoionic theory describes dispersion in a
cold electron gas, and the waves are often called magnetoionic waves. The properties
of magnetoionic waves are discussed in this section.

3.3.1 Magnetoionic Waves

The name “magnetoionic” is an anachronism: magnetoionic theory was developed
before the present-day meaning of “ion” became accepted. Ions, in the modern-day
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sense, play no role in the magnetoionic theory. Magnetoionic theory corresponds to
cold plasma theory with only the contribution of the electrons retained.

In treating the magnetoionic theory here, an admixture of (cold) positrons is
included. This is achieved by re-interpreting the sign of the charge, ��, as the
average charge per particle, that is, as � D .nC � n�/=.nC C n�/, where n˙
are the number densities of electrons and positrons, respectively. (The ˙ labeling
corresponds to the sign � used in QED, with � D C1 for the particle and � D �1 for
the antiparticle, which are electron and positron, respectively, here.) An electron gas
corresponds to � D 1, a pure pair plasma (equal numbers of electrons and positrons)
corresponds to � D 0, and a positron gas corresponds to � D �1.

The dispersion equation (3.2.2) for a cold plasma becomes the dispersion
equation for the magnetoionic waves when (1.2.38) is used to express S;D;P in
terms of the magnetoionic parameters, X D !2p=!

2, Y D ˝e=!, specifically
S D 1 � X=.1 � Y 2/, D D ��XY=.1 � Y 2/, P D 1 � X . The magnetoionic
dispersion equation becomes

An4 � Bn2 C C D 0;A D 1 � X

1� Y 2
.1 � Y 2 cos2 �/;

B D
�
1 � 2X

1 � Y 2
C X2

.1 � Y 2/2
.1 � �2Y 2/

�
sin2 �

C.1 �X/
�
1 � X

1 � Y 2



.1C cos2 �/;

C D .1 � X/

�
1 � 2X

1 � Y 2
C X2

.1� Y 2/2
.1 � �2Y 2/

�
: (3.3.1)

The solutions in the form (3.2.4), n2 D n2˙ D .B ˙ F /=2A, F D .B2 � 4AC/1=2

define two magnetoionic modes.
An alternative derivation of the wave properties for a cold plasma involves first

solving the quadratic equation (3.2.6) for the axial ratio, T . In the magnetoionic
theory (3.2.6) becomes

T 2 CRT � 1 D 0; R D .1 �E/Y sin2 �

�.1 �X/ cos �
; E D .1 � �2/X

1 � Y 2
: (3.3.2)

The solutions of (3.3.2) are T D 1
2
Œ˙.4CR2/1=2�R� D 1=f 1

2
Œ˙.4CR2/1=2CR�g.

These are

T D T� D �Y.1 � X/ cos �
1
2
.1 � E/Y 2 sin2 � � ��

D �
1
2
.1� E/Y 2 sin2 � C ��

�Y.1 � X/ cos �
;

�2 D 1
4
.1 �E/2Y 4 sin4 � C �2.1 �X/2Y 2 cos2 �; (3.3.3)
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Fig. 3.2 The dispersion
curves for the o, x and
z branches of the
magnetoionic modes are
indicated schematically for
!p < ˝e . The whistler
branch (called helicon waves
in a laboratory plasma) is off
the diagram in the upper left
hand corner

with � D ˙1. The three relations (3.2.8) give alternative expressions for n2� by
setting M ! � D ˙ and substituting the expressions (1.2.38) for P; S;D.

3.3.2 Four Branches of Magnetoionic Modes

The magnetoionic waves in an electron gas (� D 1, E D 0) have four branches:
two high frequency branches, referred to here as the o mode and the x mode, and
two lower frequency branches, referred to as the z mode and the whistler mode. The
o mode and the x mode exist above respective cutoffs, the z mode exists between
a cutoff and a resonance, and the whistler mode exists below a resonance. These
branches are illustrated in Fig. 3.2.

The cutoff frequencies satisfy C D 0, with C given by (3.3.1). For � D 1 there
are three (positive frequency) solutions. The solution corresponding to 1�X D 0 is
! D !p, which is the cutoff for the o mode. Two positive frequency solutions arise
from the factor in square brackets in (3.3.1). Writing these as ! D !x and ! D !z,
one finds

!x D 1
2
˝e C 1

2
.4!2p C˝2

e /
1=2; !z D � 1

2
˝e C 1

2
.4!2p C˝2

e /
1=2: (3.3.4)

These are the cutoff frequencies for the x and z modes, respectively.
The resonant frequencies satisfy A=C D 0. The solutions of A D 0, which

are independent of �, are the resonant frequencies !˙.�/, defined by (3.2.13). The
higher-frequency resonance is between the larger of !p;˝e and !UH, and is the
resonance in the z mode. The lower-frequency resonance is below the smaller of
!p;˝e , and is the resonance in the whistler mode. For the lower resonant frequency,
the neglect of the ions is not justified when !�.�/ is comparable with or less than
the lower-hybrid frequency.

The solutions of the dispersion equation in the limit sin � D 0 are different from
the limit sin � ! 0 of the solutions for sin � ¤ 0. The dispersion relations for
sin � D 0 are n2 D 1 � X=.1 ˙ Y / for two transverse modes, and X D 1 for a
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Fig. 3.3 (a) For � D 0 there are two curves plus a vertical line (not shown) at ! D !p . (b) Circled
portion of (a) magnified; the dashed lines is for � ¤ 0; for � D 0 the o mode and the z mode join
at ! D !p

longitudinal mode. The dispersion curve n2 D 1 � X=.1C Y / crosses the solution
X D 1 at n2 D Y=.1C Y /. The two solutions for nonzero angle � , reduce to these
solutions for arbitrarily small � , except that a reconnection occurs, as illustrated
schematically in Fig. 3.1a. In the limit sin � ! 0, the solution n2 D 1�X=.1C Y /

corresponds to the o mode for ! > !p and to the z mode for ! < !p; the solution
X D 1 corresponds to the o mode for n2 < Y=.1 C Y /, and to the z mode for
n2 > Y=.1C Y /. The change in the dispersion curves from sin � D 0 to sin � ¤ 0

is indicated schematically in Fig. 3.3.

3.3.3 QL and QT Limits

A useful approximation is based on whether the modes are nearly circularly
polarized, jT˙j D 1, or nearly linearly polarized, T˙ D 0;1. In the now
outdated conventions of the magnetoionic theory these were called the quasi-
longitudinal (QL) and quasi-transverse (QT) limits. Although the labels QL and
QT are used here, they should be interpreted as the nearly-circular and nearly-linear
approximations, respectively.

For an electron gas (� D 1,E D 0), it follows from (3.3.2) that for jY sin2 �=.1�
X/ cos � j � 1 the two solutions for the axial ratio are T 
 ˙1, and that for
jY sin2 �=.1 � X/ cos � j 	 1, the two solutions approach T D 0;1. It follows
from (3.3.3) that one has

� 

(

j.1 �X/Y cos � j QL limit;
1
2
Y 2 sin2 � QT limit:

(3.3.5)
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The QL and QT approximations apply at small angles, j cos � j 	 cos �0, and large
angles, j cos � j � cos �0, respectively, with

j.1� X/ cos �0j D 1
2
Y sin2 �0: (3.3.6)

The solution of (3.3.6) gives

�0 D arccos

�
Œ.1 � X/2 C Y 2�1=2 � j1� X j

Y

�
: (3.3.7)

The QL limit includes the special case of parallel propagation, when all modes
are either longitudinally or circularly polarized. The QL limit provides simple
approximations to the dispersion relations for the (nearly) circularly polarized
modes for oblique propagation, � � �0. For example, in the high-frequency limit
X; Y � 1 the modes with T� D � , with � D ˙1, have

n2� D 1 � X

1 � �Y cos �
; L� D XY sin �

1 �X
1

1 � �Y cos �
: (3.3.8)

The QT limit includes perpendicular propagation. The ordinary mode in magne-
toionic theory, is defined as the mode with dispersion relation n2 D P for � D 
=2.
Solving for the two modes for � D 
=2 gives n2 D P , n2 D .S2 � D2/=S , with
T ! 1 for the ordinary mode, and T ! 0, L ! D=S for the extraordinary mode.

Transition Angle

The axial ratio, T , which completely describes the transverse part of the polarization
of a natural wave mode, depends only on the parameter R in the quadratic
equation (3.3.2). The degree of linear polarization is rl D .T 2�1/=.T 2C1/ and the
degree of circular polarization is rc D 2T=.T 2 C 1/. The variations of jrl j and jrcj
for either of the two solutions of (3.3.2) as a function of R are plotted in Fig. 3.4.
One has jrc=rl j D 2=jRj, implying that the degrees of polarization are equal for
jRj D 2. It is convenient to define a transition angle, �c, corresponding to jRj D 2.
Then a given mode is approximately circularly polarized in one sense for ��<�c,
approximately linearly polarized for �c�<��<
 � �c, and approximately circularly
polarized in the opposite sense for 
 � �c�<� � 
 .

Writing jRj D r sin2 �= cos � , with r D .1 � E/Y=�.1 � X/ 
 Y=�,
where the approximation applies for X � 1, the transition angle satisfies 2 D
jr j sin2 �c= cos �c, which gives

�c D arccos

�
.1C r2/1=2 � 1

jr j





(

=2� jr j for r � 1;

.2=jr j/1=2 for r 	 1:
(3.3.9)
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1Fig. 3.4 The magnitudes of
the degrees of circular (solid
line) and linear (dashed line)
are plotted for either mode as
a function of R [23]

For jr j � 1 the polarization is nearly circular except for a small range of angles

 ˝e=! around 
=2, and for jr j 	 1, the polarization is nearly linear except in
small cones about parallel and anti-parallel propagation.

3.3.4 High-Frequency Limit

At high frequency the magnetoionic waves may be approximated by expanding in
powers ofX � 1, Y � 1. At sufficiently high frequencyX / 1=!2 becomes much
smaller than Y / 1=!, and the wave properties may be approximated by taking the
limit X ! 0 in (3.3.2). The solutions (3.3.3) for X D 0 become

T� D � cos �
1
2
Y sin2 � � �ı D �

1
2
Y sin2 � C �ı

� cos �
; ı D �

1
4
Y 2 sin4 � C �2 cos2 �

�1=2
:

(3.3.10)
An expansion in Y is valid except for a small range of angles about perpendicular
propagation, specifically, except for j cos � j�<1

2
Y . The leading term in the expansion

of (3.3.10) gives T� D ��� cos �=j� cos � j, corresponding to circular polarization.
In this approximation, the refractive indices become

n2� D 1 � X.1� �Y /: (3.3.11)

The longitudinal part of the polarization, L� , is very small, being proportional to
XY . The neglect of the longitudinal part of the polarization is the basis for the
weak-anisotropy approximation, discussed in � 3.6.
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3.3.5 Effect of an Admixture of Positrons

Including an admixture of positrons in the magnetoionic theory [5–7] has a
qualitatively different effect from including ions. Positrons have the same cyclotron
frequency as electrons, but they gyrate in the opposite sense to electrons. This has
a subtle consequence: the positron contribution adds to the electron contribution in
the nongyrotropic part of the response tensor, but subtracts in the gyrotropic part,
described by S and D respectively. For equal numbers of electrons and positrons
the gyrotropic part is zero, D D 0. More generally, S and D include terms /
!2p=.!

2�˝2
e / and / �!2p=.!

2�˝2
e /, respectively. The dispersion equation involves

the combination S2 �D2 to which these terms contribute .1 � �2/!4p=.!
2 �˝2

e /
2.

In the absence of positrons, � D 1, this contribution is zero, and there is no terms
/ 1=.!2 �˝2

e /
2. However, for �2 ¤ 1, the dispersion equation contains a term that

diverges quadratically at ! D ˝e , and this introduces a resonance at the cyclotron
frequency that is not present for an electron gas. There is also an additional cutoff,
leading to an additional branch of the magnetoionic waves that is a unique feature
of a cold electron/positron gas.

The cutoffs occur at C D 0, corresponding to either P D 0 or S2 � D2 D 0.
The cutoff at P D 0, X D 1 or ! D !p , is unaffected by the presence of positrons.
The two cutoffs (3.3.4) in an electron gas correspond to S2 � D2 D 0, and for
�2 ¤ 1 there are three cutoffs in general. These satisfy

.1 � Y 2 �X/2 � �2X2Y 2 D 0; (3.3.12)

which factorizes into two cubic equation for !:

!3 � !.!2p C˝2
e /˙ �!2p˝e D 0: (3.3.13)

The cutoffs are given by the real solutions for ! > 0 of one or other of these
equations. A graphical solution is indicated in Fig. 3.5, where (3.3.12) is plotted as
a function of x D !=˝e. There are three solutions for � ¤ 0. For � D 1 two
of these are the cutoffs !x; !z given by (3.3.4), and the third is at ˝e, but this is
spurious, arising by multiplying by .1 � Y 2/2 in deriving (3.3.12). For � ¤ ˙1; 0
the three cutoffs are all different and none is equal to˝e . For � ! 0 the three cutoffs
approach each other, and coincide in the limit � D 0 at the upper-hybrid frequency
! D !UH.

The modification of the magnetoionic modes due to an admixture of positrons is
indicated by the dashed curves in Fig. 3.6. The additional mode introduced by the
resonance at ! D ˝e may be interpreted as a cyclotron resonant mode, and it is
denoted by c in Fig. 3.6.

The wave properties simplify considerably for a pure pair plasma, � D 0. For
� D 0 one has D D 0 in (1.2.38), and the equivalent dielectric tensor (1.2.29)
reduces to the same form as for a uniaxial crystal. The dispersion equation becomes
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13
4

2
x

Fig. 3.5 The cubic equation (3.3.13) is plotted schematically as a function of x D !=˝e . The two
dashed curves are for � D ˙1 and they give positive frequency cutoffs at points 1, 2 and 3. As j�j
is decreased, the dashed curves approach each other, and coincide as the solid curve for � D 0,
when there is only one cutoff at 4

.n2�S/.An2�PS/ D 0. For � ¤ 0, the ordinary mode (as defined in magnetoionic
theory) has dispersion relation and polarization vector

n2o D .!2 � !2p/.!2 � !2p �˝2
e /

Œ!2 � !2�.�/� Œ!2 � !2C.�/�
; eo D .P cos �; 0;�S sin �/

.P 2 cos2 � C S2 sin2 �/1=2
;

(3.3.14)

and the extraordinary mode (as defined in magnetoionic theory) has

n2x D !2 � !2p �˝2
e

!2 �˝2
e

; ex D .0; i; 0/; (3.3.15)

where the coordinates axes have B along the 3-axis and k in the 1–3 plane, and
where !2˙.�/ are given by (3.2.13).

There is an inconsistency in the labeling of the modes: the conventional labeling
of the modes from magnetoionic theory is opposite to that for the labeling implied by
the analogy with a uniaxial crystal. For a uniaxial crystal the ‘ordinary’ mode is the
one that does not depend on angle, and the ‘extraordinary’ mode is the one that does
depend on angle. With this convention, the labels o and x in (3.3.14) and (3.3.15)
would be reversed.

For � D 0 there are two cutoff frequencies, at ! D !p in the o mode, and at
! D .!2p C˝2

e /
1=2. The latter is a double solution, and corresponds to a cutoff that

is common to both modes.
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Fig. 3.6 (a) A schematic
illustration of the refractive
index curves for !p � ˝e in
a cold electron gas (full
curve) and the modifications
introduced by a small
admixture of positrons
(dashed curves). (b) As for
(a) but for !p � ˝e and
omitting the whistler mode

3.3.6 Lorentz Transformation of Magnetoionic Waves

In the presence of streaming, one may treat wave dispersion in two alternative ways.
The more general way is to construct the dispersion equation with the streaming
motions included in the response tensor, and solve for the wave modes directly.
This is the only method that applies when different species are streaming at different
velocities. The other method applies when all species are streaming with the same
velocity. Then one may solve for the wave properties in the rest frame, and Lorentz
transform these properties to the frame in which the plasma is streaming.

Consider the magnetoionic waves in a frame in which the (cold) electron gas is
streaming; the ions play no role and can be ignored. Let the rest frame of the plasma
be the unprimed frame and letthe primed frame be the laboratory frame in which the
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plasma is streaming. A Lorentz transformation between the wave 4-vectors in the
two frames gives

0
@
!0
k0?
k0

z

1
A D

0
@
�.! C kzˇ/

k?
�.kz C !ˇ/

1
A ;

0
@
!

k?
kz

1
A D

0
@
�.!0 � k0

zˇ/

k0?
�.k0

z � !0ˇ/

1
A : (3.3.16)

Given the refractive index n D n�.!; �/ in the rest frame, one uses it to write
kz D n cos � , k? D n sin � as functions of !; � . One then finds k0

z D n0 cos � 0,
k0? D n0 sin � 0 from (3.3.16) and uses these to find n0 and � 0 as functions of!; � . It is
straightforward to write down the solutions implicitly, but finding explicit solutions
usually requires making simplifying approximations.

Rather than Lorentz transform directly, it is sometimes helpful to write the
solutions in the rest frame in terms of invariants, and then to evaluate these invariants
in the moving frame. The quantities n2; sin2 �; ! in the rest frame, whose 4-velocity
is Qu�, can be written in invariant forms by using the identifications

n2 ! .k Qu/2 � k2
.k Qu/2 ; sin2 � ! k2?

.k Qu/2 � k2
; ! ! k Qu: (3.3.17)

In the rest frame one has Qu� D Œ1; 0�. This allows one to rewrite the dispersion
equation in an arbitrary frame by making the replacements k ! k0, Qu ! u, with
u� D Œ�; �β�, and with k0? D k?. However, the dispersion equation An4 � Bn2 C
C D 0 is no longer a quadratic equation in the new variables, e.g., in n02, � 0, !0, and
solving it for the dispersion relations is not straightforward.

Provided one is interested only in waves with high frequency, such that the
refractive index is of order unity, it is sometimes convenient to rewrite the dispersion
equation (3.3.1) for n2 �1CX , rather than for n2. The advantage is that one has (in
ordinary units) n2 � 1CX D �.k2c2 � !2p/=!

2, where k2c2 � !2p is an invariant.
Then (3.3.1) becomes

a.n2 � 1CX/2 � b.n2 � 1CX/C c D 0; (3.3.18)

with a D A, b D B � 2A.1�X/, c D C �B.1�X/CA.1�X/2. The solutions
of the quadratic equation (3.3.18) give the dispersion relations in invariant form
(ordinary units)

k2 D k2˙ D !2p

c2

�
1 � b ˙ .b2 � 4ac/1=2

2aX

�
: (3.3.19)

The dispersion relations in the primed frame are then formally given by (3.3.19)
with k2 D !02=c2�jk0j2 and with a; b; c expressed in terms of the primed variables.
Although the solutions are implicit, provided that n2 is not too different from 1�X ,
one can solve (3.3.19) iteratively to find explicit solutions.
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3.3.7 Transformation of the Polarization Vector

The transformation of a polarization vector from one inertial frame to another re-
quires that the Lorentz transformation be complemented by a gauge transformation.
This arises because a polarization 3-vector is defined in the temporal gauge, and
the gauge condition is not preserved by the Lorentz transformation. Consider the
transformation of the polarization 3-vector, in the general form

e˙ D .L˙κ C T˙t C ia/

.L2˙ C T 2˙ C 1/1=2
; (3.3.20)

from the rest (unprimed) frame of the plasma to a (primed) frame in which the
plasma is streaming along the magnetic field lines.

It is straightforward to apply a Lorentz transformation to the vectors κ; t; a,
giving, say, κt; t t; at, respectively. One needs to make a gauge transformation to
the temporal gauge in the primed frame (� 2.6.4 of volume 1). The transformed
vectors are

κt D �!

!0jkj .jkj0 sin � 0; 0; jkj0 cos � 0 � !0ˇ/; (3.3.21)

t t D 1

n

�
n0 cos � 0 � ˇ.1 � n02/

1 � n0ˇ cos � 0 ; 0;�n0 sin � 0


; at D a: (3.3.22)

One may rewrite (3.3.22) as

t t D 1

n

�
n0 � .1 � n02/ˇ cos � 0

1 � n0ˇ cos � 0



t 0 � 1

n

.1 � n02/ˇ sin � 0

1 � n0ˇ cos � 0 κ0; at D a0;

(3.3.23)

with κ0 D .sin � 0; 0 cos � 0/, t 0 D .cos � 0; 0;� sin � 0/, a0 D .0; 1; 0/. In the primed
frame the polarization vector is given by

e 0̇ D .L˙κt C T˙t t C iat/

.L2˙ C T 2˙ C 1/1=2
; (3.3.24)

with L˙; T˙ rewritten as functions of the primed variables. Using (3.3.21)
and (3.3.23) one may rewrite (3.3.24) in the form e0

˙ D .L0
˙κ0CT 0

˙t 0Cia0/=.L02
˙C

T 02
˙ C 1/1=2, with L0

˙; T
0
˙ identified in terms of L˙; T˙ by relatively cumbersome

expressions.

3.4 Waves in Weakly Relativistic Thermal Plasmas

There is a rich variety of natural wave modes in a magnetized thermal plasma.
These modes include modified forms of the modes of a cold magnetized plasma,
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and additional modes that depend intrinsically on thermal effects. In this section the
properties of waves in a weakly relativistic, magnetized, thermal, electron gas are
discussed.

3.4.1 Cyclotron-Harmonic Modes

Emphasis is placed here on cyclotron-harmonic modes.

Wave Modes for Perpendicular Propagation

Cyclotron harmonic modes near perpendicular propagation, often called Bernstein
modes, were first discussed by Gross [8] and Bernstein [9], who considered longitu-
dinal modes. Two further classes of cyclotron harmonic modes, related to ordinary
and extraordinary modes, were identified by Dnestrovskii and Kostomarov [10,11].
The properties of all three classes of cyclotron harmonic modes in the nonrelativistic
case were described by Puri et al. [12, 13]. Here we follow [14–16] in referring to
these as the Gross-Bernstein (GB) modes, and the Dnestrovskii-Kostomarov (DK)
modes.

Cyclotron harmonic modes were first identified for strictly perpendicular propa-
gation in a nonrelativistic plasma, and it is appropriate to start by considering this
case. Setting kz D 0 in (2.5.27), the 13-, 23-, 31- and 32-components of the response
3-tensor are zero. The dispersion equation then becomes

ˇ̌
ˇ̌
ˇ̌
K1

1 K1
2 0

K2
1 K

2
2 � n2 0

0 0 K3
3 � n2

ˇ̌
ˇ̌
ˇ̌ D .K3

3�n2/ŒK1
1.K

2
2�n2/�K1

2 K
2
1� D 0; (3.4.1)

whereK1
2 D �K2

1 is imaginary. There are two relevant solutions

n2 D K3
3; K1

1 .K
2
2 � n2/� jK1

2j2 D 0; (3.4.2)

corresponding to the ordinary and extraordinary modes, respectively. The solution
of (3.4.2) for the extraordinary mode, satisfying

n2 D K2
2 � jK1

2j2
K1

1

; (3.4.3)

are the DK modes, which are transverse. The GB modes are longitudinal.
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Cyclotron-Harmonic Modes in a Nonrelativistic Plasma

The cyclotron-harmonic modes have their simplest form for perpendicular prop-
agation in a nonrelativistic thermal electron gas. The relevant dielectric tensor is
Shkarofsky’s approximation (2.5.27) to Trubnikov’s response tensor. In (2.5.27)
one sets kz D 0 for perpendicular propagation, and r0.�/ D � � i!� in the
exponential function and r0.�/ D � elsewhere, corresponding to the nonrelativistic
limit. In the nonrelativistic limit, the quantity �, introduced in (2.5.26), reduces to
� D k2?V 2=˝2

0 , with V 2 D 1=�. Then (2.5.27) gives

Ki
j D ıij � !2p

!2

1X
aD�1

hij .�/e
��

�a

; � D k2?
�˝2

0

D n2!2

�˝2
0

; �a D ! � a˝0

!
;

h11.�/ D a2Ia.�/=�; h12 D �i�sŒIa.�/ � I 0
a.�/�;

h22 D h11 � 2�ŒIa.�/� I 0
a.�/�; h33 D Ia.�/; (3.4.4)

with � D 1 for an electron gas.

Ordinary Modes

On inserting (3.4.4) in the dispersion relation (3.4.2) for ordinary mode waves, one
obtains

n2 D 1 � !2p

!2

1X
aD�1

Ia.�/e
��

�a

: (3.4.5)

The factor �a in (3.4.5) becomes arbitrarily small in the limit ! ! a˝e , and no
matter how small the numerator, which contains the factor

Ia.�/e
�� 


(
�a=2aaŠ for � ! 0;

1=.2
�/1=2 for � ! 1;
(3.4.6)

there is always a solution of (3.4.5). Hence, there is one ordinary mode per harmonic
a � 1.

The qualitative form of the dispersion relations is illustrated in Fig. 3.7. Each
mode has both a cutoff (n2 ! 0, � ! 0) and a resonance (n2 ! 1, � ! 1). The
properties of these modes can be summarized as follows:

1. As the cutoff at the ath harmonic is approached, the dispersion relation (3.4.5) is
approximated by

�a D �2aaŠ�a.!
2
p � a2˝2

e /=!
2
p: (3.4.7)

This implies that for � ! 0 the dispersion curve approaches the harmonic from
below for a˝e < !p and from above for a˝e > !p , as illustrated in Fig. 3.7.
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Fig. 3.7 Schematic, classical dispersion of ordinary modes. The maximum deviation of each
individual mode from the nearest harmonic for � � a2 has been exaggerated for clarity. Regions A
and B correspond to! < !p and ! > !p , respectively. The cold plasma o mode has � � a2=�, and
is approximated by the segments of dispersion curve lying outside the immediate neighbourhood
of the harmonics in region B (From [15], reprinted with permission Cambridge University Press)

2. As the resonance at the ath harmonic is approached, the dispersion rela-
tion (3.4.5) is approximated by

�3=2 D �!2p=˝2
e .2
/

1=2�a�: (3.4.8)

This implies that for � ! 1 the dispersion curve approaches the harmonic from
below for a˝e < !p and from above for a˝e > !p , as illustrated in Fig. 3.7.

3. For ! � !p each dispersion curve has nearly horizontal portions in which !
varies slowly with � at small and large �, plus a portion in which the dispersion
curve goes from just above one harmonic to just below the next harmonic. The
latter portions of the curves for each harmonic form an envelope approximately
along n2 D 1 � !2p=!2.

4. Close to the ath harmonic the sum in (3.4.5) is approximated by retaining only
the terms labeled 0 and a. This gives

�a D !2pIa.�/e
��

a2˝2
e � !2pI0.�/e�� � ��˝2

e

; j�ajmax 
 !2p

˝2
e .2
e/

1=2�a3
;

(3.4.9)
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which is valid for ja�aj � 1. The maximum value, j�ajmax, determines the
maximum deviation of the dispersion curve from the harmonic line, and it occurs
for � 
 a2.

Extraordinary Modes

The extraordinary modes includes both the DK modes and the GB modes. Their
properties can be summarized as follows:

1. In the cold plasma limit, � ! 0, the DK mode corresponds to the extraordinary
mode of magnetoionic theory, with dispersion relation given by

n2 D .!2 � !2x /.!2 � !2z /

!2.!2 � !2UH/
; (3.4.10)

where !UH D .!2p C˝2
e /
1=2 is the upper-hybrid frequency (3.2.11). The x-mode

is the branch above the cutoff at !x, and the z-mode is the branch in the range
!z < ! < !UH where the cutoff frequencies are given by (3.3.4).

2. The thermally modified z-mode joins onto a GB mode at !UH. The relevant GB
mode is the one that has its cutoff at the harmonic a˝e immediately below !UH.

3. Close to the ath harmonic, for ja�aj � 1, the sum in (3.4.5) is approximated by
retaining only the terms labeled ˙1 and a. This gives

.A� y/2 � �2.B C y/2 C Ey2 D 0; y D !2p

˝2
e

�a�1

2aaŠ

e��

�a

;

A D 1 � !2pI1.�/e
��

!�

�
1

! �˝e

C 1

! C˝e



; E D .aC 2/2

a2.aC 1/
;

B D !2pŒI
0
1.�/ � I1.�/�e��

!

�
1

! �˝e

� 1

! C˝e



: (3.4.11)

4. Near the cutoff at the ath harmonic, the dispersion curves for the DK and
GB modes approach each other (K2

2 ! K1
1, jK1

2j2=K1
1 ! 0), and the

two solutions of (3.4.11) give the cutoffs for the DK and GB modes. The two
modes that emerge from cutoffs at the ath harmonic have dispersion relations,
for � ! 0,

�s�1 D 2aaŠ�a

˝2
e

!2p

AC �2B ˙ Œ.AC �2B/2�.1 � �2 C E/.A2��2B2/�1=2

1��2 C E
;

(3.4.12)

where A, B are evaluated at � D 0. For a˝e < !z both modes emerge below the
harmonic, for !z < a˝e < !x one emerges below the harmonic and the other
above the harmonic, and for a˝e > !x both emerge above the harmonic.
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Fig. 3.8 Schematic classical dispersion of extraordinary modes. For modes localized near a
particular harmonic, the maximum deviation from that harmonic has been exaggerated for clarity.
Regions A, B and C correspond to ! < !zC , !zC < ! < !xC and !xC < !, respectively.
For �	>a2, Gross-Bernstein and Dnestrovskii-Kostomarov modes approach the harmonics from
above and below respectively. The cold plasma x and z modes are approximated by the segments
of dispersion curve having � � a2=� and lying outside the immediate neighbourhood of the
harmonics in regions B and C respectively (From [16] reprinted with permission Cambridge
University Press)

5. For � ! 1 the resonances correspond to

�3=2 D
(
!2p=˝

2
e .2
/

1=2�a� for GB modes;

�!2p=˝2
e .2
/

1=2�a� for DK modes:
(3.4.13)

Thus the GB mode approaches the harmonic from above and the DK mode
approaches the harmonic from below.

The qualitative form of the dispersion curves for the extraordinary mode are
illustrated in Fig. 3.8.

3.4.2 Inclusion of Weakly Relativistic Effects

The foregoing properties of cyclotron wave modes in a nonrelativistic plasma
are modified when either weakly relativistic effects [14–16] or non-perpendicular
propagation [17] are included. Weakly relativistic effects, which are included
through the Shkarofsky functions, include a frequency downshift, a broadening of
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each resonance, and an associated broadening of the frequency range in which
damping occurs. The wave properties are also sensitive to the deviation, 	 D

=2� � ¤ 0, from perpendicular propagation.

A semiquantitative prescription for generalizing the nonrelativistic modes to
include these effects is as follows [17]:

1. Solve the dispersion equation in the nonrelativistic limit, ignoring the weakly
relativistic effects, to find the “nonrelativistic” modes, as above.

2. Downshift the nonrelativistic modes by a fractional amount of order 1=�.
3. Determine the frequency range of the core of the cyclotron absorption band

below each harmonic. Any downshifted, large-� mode lying in this range is
heavily damped.

4. Introduce resonance broadening over a fractional frequency range of order˝e=�

around the downshifted cyclotron harmonic frequency.
5. To allow for 	 ¤ 0 include damping over a frequency range of order kz=�

1=2,
with kz D jkj cos � 
 jkj	. As a result, for kz > !�1=2 damping extends above
the harmonic.

The following discussion of the specific wave modes amplifies these points.

Modified Ordinary Modes

Weakly relativistic effects are included in the dispersion relation (3.4.2) for the
ordinary mode by evaluatingK3

3 using the approximate form (2.5.31). A somewhat
improved approximation [17] gives

n2 D 1� !2pIa.�/e
���

!2

�
1C 2a

@

@a



Fq.za; a/; (3.4.14)

q D 5=2C .a2 C �2/1=2 � � � �

2.a2 C �2/
; (3.4.15)

with a D k2z �=2!
2 and with the Shkarofsky function approximated by the

form (2.5.39).
The properties of Fq.z/ illustrated in Fig. 2.1 underlie the points 1–5 above in

describing weak relativistic effects on the dispersion. Using (3.4.14), these weakly
relativistic effects are confined to the range

j.za C q/=.4aC 2q/1=2j�<3: (3.4.16)

As a result the large-� ordinary modes cannot exist outside the range a�<amax,
	�<	max, with

a3max 
 !2p

˝2
e

1

7C 6.7C 2
3
�2 tan2 	/

; 	2max D 3

2�2

�
.2�j�ajmax � 7/2

36
� 7

�
:

(3.4.17)
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It follows that weakly damped ordinary mode waves exist only for !2p�>23˝2
e , and

then only for ! � !p .

Dnestrovskii-Kostomarov Modes

The DK modes are modified in a similar way to ordinary mode waves by weakly
relativistic effects. Weakly damped DK modes exist only for [16]

a�<
1

8

�
!p

˝e


3=2
: (3.4.18)

In the range where they exist, the DK mode approximate their nonrelativistic
counterparts closely.

Inclusion of an admixture of positrons affects only K1
2 D �K2

1. It follows that
the presence of positrons affects the DK modes, but not the GB modes.

Gross-Bernstein Modes

The weakly relativistic dispersion relation for the GB modes is

0 D 1 � !2p�Ia.�/e
��

!2�

X
a

a2Fq�1.za; a/; (3.4.19)

with q given by (3.4.15), and with the Shkarofsky function approximated
by (2.5.38). The modifications from the nonrelativistic GB modes are similar to
those for the ordinary modes. The maximum harmonic for which GB modes exist
for perpendicular propagation, and the maximum value, 	max, for which off-angle
propagation is possible for given a are [17]:

a3�<
3!2p

�˝2
e

1

15C �2 tan2 	
; 	2�<	2max D 3

2�2

 
!2p�

˝2
e a

3
� 5

!
: (3.4.20)

In summary, weakly relativistic effects are severely limiting on the range of
existence of the cyclotron harmonic wave modes. This is due primarily to damping
just below the cyclotron harmonic associated with the relativistic downshift in
the cyclotron frequency, ˝e=� , compared with the nonrelativistic case, ˝e. The
nonrelativistic limit for perpendicular propagation implies no damping except
exactly at ! D a˝e, and weakly relativistic effects imply damping in a range
below a˝e, as illustrated in Fig. 2.1. The inclusion of a small angular deviation,
	 D 
=2 � � , from perpendicular propagation allows damping at ! ¤ a˝e ,
which is qualitatively similar to the weakly relativistic effect. The damping allowed
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for 	 ¤ 0 (that is, kz ¤ 0) is symmetric in frequency about the cyclotron line,
whereas the damping due to the relativistic effect,˝e ! ˝e=� , is always below the
nonrelativistic resonance.

3.5 Waves in Pulsar Plasma

The plasma in a pulsar magnetosphere has properties that are qualitatively different
from plasmas in other contexts, leading to the development of a subfield of plasma
dispersion theory specifically directed towards interpreting pulsar radio emission.

3.5.1 Cold-Plasma Model

In most models for the radio emission, the condition ! � ˝e is assumed to apply
in the source region of radio emission. The simplest model for the wave dispersion
is to assume a cold plasma in the rest frame of the pairs, use the cold-plasma model
to determine the wave properties in this frame, and apply a Lorentz transformation
to determine the properties in the pulsar frame.

The properties of the cold-plasma wave modes are derived in � 3.3.1. In the pulsar
context, these properties apply with ˇA D ˝e=!p 	 1 and j�j D 1=M � 1

where M is the multiplicity. The modes are referred to as the O and X modes [18].
They have relatively simple properties in three ranges: low frequencies, ! � !p ,
intermediate frequencies, !p � ! � ˝e, and high frequencies, ! 	 ˝e.

Low-Frequency Modes

At low and intermediate frequencies, one has S 
 1=ˇ20 , D 
 ��Y=ˇ2A, P D
1 � X , where ˇ0 D ˇA=.1C ˇ2A/

1=2 is the MHD speed, with ˇ0 
 1 for ˇA 	 1.
Except for a small range of angles about sin � D 0, one has R2 	 4 in (3.3.2),
implying that the two modes are approximately linearly polarized. The identification
of the ˙ modes depends on the sign of R, which is determined by the sign � D
�.1�X/� cos �=j.1�X/� cos � j. For � D 1, TC 
 R corresponds to the O mode,
and T� 
 �1=R corresponds to the X mode; for � D �1, T� 
 �R D jRj
corresponds to the O mode, and TC 
 1=R D �1=jRj corresponds to the X mode.

At low frequencies,! � !p , the two modes are MHD-like. In the limit Y ! 1,
using the first and last of (3.2.8) with TC ! 1 and T� ! 0, respectively, one
obtains the approximations

n2O 
 PS

A

 1 �X
1 � X cos2 �

; n2X 
 S 
 1: (3.5.1)
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Fig. 3.9 The dispersion
curves for the X, Alfvén and
O modes are shown
schematically for a pulsar
plasma for a small value of
h�i and a relatively small � .
The resonance in the Alfvén
mode is denoted by !max and
the cutoff in the longitudinal
(L) portion of the O mode by
!c. The O mode crosses the
light line (dashed diagonal
line) for very small � , but not
otherwise. For h�i � 1 the
qualitative shape of the
dispersion curves remains the
same, but drawn out along the
light line

The polarization vectors in the same approximation are

eO D LOκ C TOt

.L2O C T 2O/
1=2
;

LO

TO
D �X sin � cos �

1 �X cos2 �
; eX D ia: (3.5.2)

The dispersion curves for the O and X modes are illustrated in Fig. 3.9. The
O mode dispersion relation (3.5.1) separates into a lower-frequency range, !2 <
!2p cos2 � , and a higher-frequency range !2 > !2p . At low frequencies, ! � !p ,
the dispersion relation becomes n2 D 1= cos2 � , polarized along the 1-axis. These
properties correspond to the Alfvén mode in the limit ˇA ! 1. The upper limit
of the low-frequency branch is at the resonance at !2 D !2p cos2 � , where the
polarization becomes longitudinal. There is a stop band, !2p cos2 � < !2 < !2p ,
between the lower and upper branches. The upper branch starts at a cutoff at
!2 D !2p . At higher frequencies, still satisfying ! � ˝e , the dispersion relation

approaches n2O 
 1� .!2p=!2/ sin2 � , which is equivalent to !2 � jkj2 
 !2p sin2 � .
The X mode has vacuum-like properties, n2X 
 1=ˇ20 
 1, and its polarization is
strictly transverse in this approximation.

3.5.2 Effect of the Cyclotron Resonance

The foregoing properties of the two modes are derived under the assumption that
the modes are nearly linearly polarized, corresponding to R 	 2 in (3.3.2). The
opposite condition,R � 2, is satisfied at sufficiently small angles, sin � � 1, where
the two modes are oppositely circularly polarized. As the ratio!=˝e increases along
the escape path, the range of angles where the modes are nearly circularly polarized
increases, and near the cyclotron resonance it extend to nearly all angles.
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Cold Plasma Modes at Small Angles

The magnetoionic dispersion equation (3.3.1) may be written in the form

.1 � X/.n2 � n2C/.n2 � n2�/� sin2 �
XY 2

1 � Y 2
n2.n2 � 1C E/ D 0; (3.5.3)

with E defined by (3.3.2), and with n2˙ defined by � D ˙1 in

n2� D 1 � X.1C � j�jY /
1 � Y 2

; T� D �� � cos �

j� cos � j : (3.5.4)

For sin � D 0 there are three solutions, X D 1, corresponding to longitudinal
oscillations at ! D !p , and two oppositely circularly polarized modes with n2 D
n2� , T D T� . In the strong-B limit, X=Y 2 D 1=ˇ2A � 1 and Y 	 1, the refractive
indices approach n2 D 1� �X=Y D 1� �Y=ˇ2A, where Y � ˇ2A (! 	 !p=ˇA) is
assumed. The handedness of the circular polarization is determined by the sign � D
�.1 � X/� cos �=j.1 � X/� cos � j, which reverses at ! D !p . As sin � increases,
jRj increases, and for jRj�>4 these modes become the O and X modes.

The effect of a Lorentz transformation to the pulsar frame for an outward
streaming motion is to modify the small range of angles where the modes are
nearly circularly polarized. The small forward cone shrinks due to the Lorentz
transform from the plasma rest frame, and the backward cone widens. As the
cyclotron resonance is approached, the backward cone can widen to extend into
forward angles in the pulsar frame.

Cold-Plasma Modes Near the Cyclotron Resonance

Escaping pulsar radiation necessarily passes through a region where the wave
frequency is equal to the cyclotron frequency. The cyclotron resonance is smoothed
out when a spread in Lorentz factors is included. Nevertheless the cold plasma
assumption provides a useful guide to identifying how the polarization varies as
the ratio of the wave frequency to the cyclotron frequency varies from well below
to well above unity.

As Y D ˝e=! varies from Y 	 1 to Y � 1, the parameter R, defined
by (3.3.2) with E D 0, varies from jRj 	 1 to jRj � 1. The axial ratios vary
from T˙ 
 R;�1=R for jRj 	 1 to T˙ D ˙1 C 1

2
R, corresponding to a change

from nearly linear to nearly circular polarization. It follows that the nearly linear
polarization of the wave modes at intermediate frequencies changes to the nearly
circular polarization characteristic of the wave modes of any magnetized plasma
at high frequencies, ! 	 !p;˝e. Due to the rapid change in the shape of the
polarization ellipse with ˝e , an inhomogeneity involving a gradient in B can be
effective in causing a wave in one mode to couple with the other mode, such that
it becomes a mixture of the two modes. Such mode coupling is said to be weak
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when the effect of the inhomogeneity is unimportant, and waves in a given mode
remain in that mode; this implies that the polarization follows the change in the
polarization of the mode as the cyclotron resonance is crossed. In the opposite limit,
when mode coupling is strong, the initial linear polarization is preserved, implying
that the waves change from one mode to the other as the cyclotron resonance is
crossed. The interpretation of the observed pulsar polarization, involving jumps
between orthogonal polarizations that can be significantly elliptical seems to require
that mode coupling be relatively strong at the cyclotron resonance allowing a partial
conversion of linear into circular polarization [19].

3.5.3 Effect of a Spread in Lorentz Factors

At frequencies well below the cyclotron resonance, the wave properties in a pulsar
plasma are modified from those of a cold plasma through the RDPF z2W.z/.
As illustrated in Figs. 2.2 and 2.3, this function is dominated by a peak just below
z D 1. As in the cold plasma case, at low and intermediate frequencies, the effect of
the gyrotropic terms is small, and a useful first approximation is to neglect them.

Wave Dispersion in Non-gyrotropic Approximation

In the non-gyrotropic case, the dispersion equation reduces to

ˇ̌
ˇ̌
ˇ̌
K1

1 � n2 cos2 � 0 K1
3 C n2 sin � cos �

0 K2
2 � n2 0

K3
1 C n2 sin � cos � 0 K3

3 � n2 sin2 �

ˇ̌
ˇ̌
ˇ̌ D 0; (3.5.5)

with the components of the dielectric tensor given by (1.3.15), with � D 0, hˇi D 0,
h�ˇi D 0 here. The dispersion equation (3.5.5) factors into two equations

K2
2 � n2 D 0; (3.5.6)

which describes the X mode, and

K1
1 K

3
3 �K1

3 K
3
1 � n2

�
K1

1 sin2 � CK3
3 cos2 �

� D 0; (3.5.7)

which has a high-frequency branch identified as the O mode, and a low-frequency
branch identified as the Alfvén mode.

X Mode

On inserting the expression (1.3.15) forKi
j , the dispersion relation for the X mode

becomes
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n2X D 1C 1=ˇ2A
1 � .ıˇ2=ˇ2A/ cos2 �

; (3.5.8)

where ıˇ2 characterizes the spread in velocities, with ıˇ2 ! 1 when the spread is
highly relativistic. The X mode is strictly transverse, polarized orthogonal to B. For
ˇ2A 	 ıˇ2�<1, (3.5.8) may be approximated by n2X D 1=ˇ20, ˇ0 D ˇA=.1C ˇ2A/

1=2,
which is the dispersion relation for magnetoacoustic waves in a cold plasma.

Equation (3.5.7) describes the Alfvén and O modes. For parallel propagation,
sin � ! 0, (3.5.7) factors into K3

3 D 0 and n2 D K1
1. The mode defined by

K3
3 D 0 is longitudinal. The mode defined by n2 D K1

1 is the Alfvén mode, which
is degenerate with the X mode for sin � D 0; the degeneracy is broken and the
modes become oppositely circularly polarized when gyrotropic effects are included.
The dispersion curves for the parallel longitudinal mode intersects both the other
modes for sin � D 0, and for small sin � ¤ 0 they reconnect to form the O mode and
the Alfvén mode on the high and low frequency sides of a stop band. The X mode
passes continuously through this band, reversing its handedness across it.

Longitudinal Mode

The dispersion relation for the parallel longitudinal (L) mode is [20]

! D !L.z/; !2L.z/ D !2pW.z/: (3.5.9)

The L mode has a cutoff at ! D !c given by

!2c D !2L.1/ D !2p
˝
��3˛ : (3.5.10)

The dispersion curve crosses the light line at ! D !1, given by

!21 D !2L.1/ D !2p h�i .1C ıˇ2/: (3.5.11)

As for Langmuir waves in a nonrelativistic plasma, the parallel L mode has a
maximum frequency at a phase speed of order the mean speed of the particles
(
 .ıˇ2/1=2), which is very close to the speed of light in a highly relativistic plasma.
Landau damping results from resonance at ! D kzv, and is strong for phase speeds
near and below the mean speed of the particles. As a consequence, the L mode
effectively ceases to exist for phases speeds near and below this maximum.

Parallel Alfvén Mode

The dispersion relation for the parallel Alfvén mode may be written in terms of the
refractive index as n2 D n2A with
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Fig. 3.10 The dispersion relations for the Alfvén (A) mode and the O modes are shown for three
values of � : the faint curve corresponds to � D 0, where the resonance (turnover at high z�2) is in
the L mode and the Alfvén mode is a horizontal line that crosses the faint curve at ! D !1; for a
very small but non-zero value of � these two dispersion curves reconnect and separate, as shown
by the inner pair of solid curves, with the O mode extending slightly into the region z�2 > 1; the
outer pair of solid curves are for a much larger value of �

n2A D 1C ˇ2A C ıˇ2

ˇ2A
: (3.5.12)

The parallel L mode and Alfvén modes intersect at the cross-over frequency
! D !co D !L.1=nA/, which may be expressed in terms of the frequencies, !c

given by (3.5.10), at which the parallel L mode crosses the light line, and !1 given
by (3.5.11), at which the parallel L mode has its cutoff. One has

!co D !2pW.1=nA/ 

(
!21 for nA � 1 � ın;

!2c .nA � 1/�2 for nA � 1 	 ın;
(3.5.13)

with nA given by (3.5.12) and with ın D !c=!1 
 1=h�i1=2. For nA � 1 	
1=h�i1=2, Landau damping by the bulk pair plasma is strong, and the waves are
strongly damped except at very small angles. For nA � 1 � 1=h�i1=2 one has
!co 
 !1.

Obliquely Propagating Modes

For slightly oblique propagation, as illustrated in Fig. 3.10, the two parallel modes
reconnect, and may be regarded as a higher-z mode and a lower-z mode, where
z D !=kz is the phase speed. The higher phase-speed mode is longitudinal near the
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Fig. 3.11 Dispersion curves, ! vs. k for nearly parallel propagation (� D 0:1 rad) in a cold
counter-streaming plasma with ˇ D 0:3, where !p D 10 and ˝e D 30 (arbitrary units). Dashed
lines are imaginary parts and solid lines are real parts. Numbers indicate regions expanded in
Fig. 3.12 (From [21], copyright American Physical Society)

cutoff frequency and becomes nearly transverse at frequencies !�>!co. This branch
is labeled the O mode in Fig. 3.10. The lower phase-speed mode corresponds to the
oblique Alfvén mode, with

z2 D !2

k2z
D 1

n2A

�
1� !2

!2co

�
1 � ıˇ2

ˇ2A
tan2 �


�
; (3.5.14)

at low frequencies ! � !co. At higher frequencies the mode is limited by the
maximum frequency for the oblique Alfvén mode, as illustrated in Fig. 3.10.

The minimum frequency for the O mode is the cutoff frequency, as illustrated in
Fig. 3.10. At higher frequencies the phase speed of the O mode increases, with the
mode being superluminal (z > 1) except for a small range of angles � 
 0. Analytic
approximations to the dispersion relation of the O mode at !�>!co are derived in
the weak-anisotropy limit, cf. � 3.6.

3.5.4 Wave Modes of a Counter-Streaming Pair Plasma

The inclusion of counter-streaming leads to a rich variety of dispersive effects, even
in the cold approximation [21], as illustrated in Fig. 3.11. In order to illustrate these
effects, the parameters chosen in Fig. 3.11 correspond to ˝e=!p D 3, ˇ D 0:3; the
topological structure of the dispersion curves is insensitive to the choice of these
parameters.
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Fig. 3.12 Dispersion curves, ! versus k for propagation at a small angle (� D 0:1 rad) in a cold
counter-streaming plasma with ˇ D 0:3, where !p D 10 and ˝ D 30. These subfigures show
close-up views of the numbered regions in Fig. 3.11, and display the behavior in the interaction
regions (From [21], copyright American Physical Society)

The cutoffs, jkj D 0, in Fig. 3.11 are near ! D 0; !p;˝e. As ˇ is reduced to
zero, the modes with cutoffs at ! D 0; !p;˝e reduce to the cutoffs in the Alfvén,
O and X modes, respectively. The number of different modes reduces in this limit
due to modes becoming coincident, which occurs with the two that cut off near˝e ,
or disappearing, which occurs for the beam modes that intersect ! D 0 in Fig. 3.11.

An important feature of dispersion in a cold plasma with counter-streaming is
that there can be intrinsically growing modes: a complex conjugate pair of solutions
arises when two real modes merge (as some parameter is varied) to become a pair
of modes with one growing and the other decaying. Complex modes appear in
Fig. 3.11 at the points labeled 1–5. New modes appear in qualitatively different ways
at nonzero frequency, as illustrated in cases 2–5 in Fig. 3.12. In some cases two real
modes reconnect to create two different real modes, as in cases 2 and 3. One class
of unstable mode is purely growing, with zero real frequency, as illustrated by the
dashed curve in Fig. 3.11 and by cases 1 and 5 in Fig. 3.12. In other cases two real
modes become a complex conjugate pair of modes, one of which is necessarily a
growing mode, as in case 4 in Fig. 3.12.

Consider, for example, the specific dispersion curve in Fig. 3.12 that begins at
! D 0 for k D 0. This branch is initially imaginary, becoming real and propagating
at k ' 1. As the intersection labeled 2 is approached, it deflects away from
the other modes and remains a single real mode, and similarly at intersection 3.
At intersection 4, it joins another mode and forms a pair of complex conjugate
solutions, which then become real again for higher k.
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3.5.5 Instabilities in a Pulsar Plasma

Pulsar radio emission requires a coherent emission mechanism to produce the very
high brightness temperatures inferred, and a coherent emission mechanism requires
some form of instability. There are several different kinds of instability that may
be relevant to the pulsar radio emission mechanism, but only streaming instabilities
are discussed here. In the standard model, the main problem is to identify a form
of relative streaming that leads to sufficiently fast growth. In an oscillating model
counter-streaming motion in a LAEW can lead to an effective instability.

Beam-Driven Maser Growth

Consider a beam with number density nb � ne , mean Lorentz factor �b and spread
��b about the mean propagating through the secondary pair plasma with number
density ne and mean Lorentz factor h�i � �b in its rest frame. A distribution
function for an idealized beam with �b 	 1 is

g.�/ D nb e
�.���b/2=2.��b/2

.2
/1=2��b
; (3.5.15)

where the normalization is nb D R
d� g.�/. The absorption coefficient for waves

in a modeM for the distribution (3.5.15) is

�M .k/ D 2i
RM.k/

"0!M .k/
˘A
M.kM /; (3.5.16)

where ˘A
M .kM/ is the antihermitian part of the response tensor for the distribu-

tion (3.5.15) projected onto the polarization vector for the mode M and evaluated
at the dispersion relation k� D k

�
M for the mode M . This gives

�M .k/ D 2RM.k/jeMkj2
"0m!M.k/

nb

Z
d�

�
ı.kMu/

dg.�/

d�
; (3.5.17)

with eMk.k/ D b � eM.k/. On inserting (3.5.15) into (3.5.17), and carrying out
the integral over the ı-function, it is convenient to change notation to !; � as
the independent variables, omitting the label M for the mode and making the
approximationRM.k/ ! 1

2
. One finds

�.!; �/ D !2pb

!

jekj2.�0 � �b/z�0
2.2
/1=2.��b/3

e�.�0��b/2=2.��b/2 ; (3.5.18)

with �0 D .1 � z2/�1=2, z D !=kz, !2pb D q2nb="0m. Wave growth occurs for
�0 < �b , which corresponds to z < ˇb .
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The maximum growth rate for this maser instability is near �0 D �b � ��b, and
is given approximately by

�max.!; �/ D �!
2
pb

!

jekj2�b
2.2
e/1=2.��b/2

; (3.5.19)

where ��b � �b is assumed. The bandwidth of the growing waves is �! 

!��b=�

3
b . The ratio of the maximum growth rate to the bandwidth of the growing

waves is ˇ̌
ˇ̌�max.!; �/

�!

ˇ̌
ˇ̌ 
 nb

ne

�4b
h�i.��b/3

jekj2
2.2
e/1=2

; (3.5.20)

where! 
 !p�
1=2

b is assumed. The maser treatment is valid only if the ratio (3.5.20)
of the growth rate greater to the bandwidth of the growing waves is small. A growth
rate greater than the bandwidth of the growing waves requires a reactive instability.

Reactive Beam Instability

When the velocity spread of the beam is neglected, the beam is cold, and the only
possible instability is reactive. For a cold beam with number density nb , velocity ˇb
and Lorentz factor �b propagating through a cold background plasma, the dispersion
equation for parallel, longitudinal waves is

1 � !2p

!2
� nb

ne

!2p

�3b .! � kzˇb/2
D 0: (3.5.21)

The dispersion equation is a quartic equation for !. We are interested in the case
where the beam is weak, in the sense nb=�3b � ne .

In the limit of arbitrarily large kzˇb , the four solutions of (3.5.21) approach ! D
˙!p; kzˇb ˙ !p.nb=ne�

3
b /
1=2. The solution near ! D �!p is of no interest here,

and it is removed by approximating the quartic equation by the cubic equation

.! � !p/.! � kzˇb/
2 � nb

2ne�
3
b

!p!
2 D 0: (3.5.22)

The solutions of the cubic equation simplify in two cases: the ‘resonant’ case
kzˇb 
 !p , and the ‘nonresonant’ case ! � !p . The approximate solutions for
the growth rate in these two cases are

! 


8̂
ˆ̂<
ˆ̂̂:

!p C i
!p

�b

p
3

2

�
nb

2ne


1=3
; resonant;

kzˇb C i
!p

�
3=2

b

�
nb

2ne


1=2
; nonresonant:

(3.5.23)
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The nonresonant version of the beam instability applies only at frequencies below
the resonant frequency, ! D kzˇb . As the resonant frequency is approached the
nonresonant instability transforms into the faster-growing resonant instability.

Both maser and reactive beam instabilities are possible for the O mode in
the range where its phase velocity is less than the beam velocity. Difficulties
with the mechanism are in identifying a possible beam to drive the instability,
and in accounting for fast enough wave growth. Both problems are alleviated in
an oscillating model where counter-streaming of electrons and positrons occurs
naturally.

3.5.6 Counter-Streaming Instabilities

An oscillating model for the pulsar magnetosphere involves counter-streaming
electrons and positrons. This differences from the weak-beam case in that there
is no background plasma at rest. Various instabilities arise in this case, as illus-
trated in Fig. 3.12. A simple analytic model involves equal number densities and
oppositely directed velocities, ˙ˇb . In this case one has W.z/ D .1=2�3b /Œ1=.z �
ˇb/

2 C 1=.z C ˇb/
2�. The dispersion equation for parallel longitudinal waves,

1 � .!2p=!2/z2W.z/ D 0, gives

.!2 � k2z ˇ2b/2 � !2p

�3b
.!2 C k2zˇ

2
b/ D 0: (3.5.24)

The two solutions, !2 D !2˙ say, are

!2˙ D k2zˇ
2
b C !2p

2�3b

8<
:1˙

"
1C 8k2zˇ

2
b�

3
b

!2p

#1=29=
; : (3.5.25)

The higher frequency branch has a cutoff (kz D 0) at ! D !p=�
3
b , with the

frequency increasing monotonically with increasing kz, given approximately by

! 

(
Œ!2p=�

3
b C 3k2zˇ

2
b�
1=2 for 8k2zˇ

2
b � !2p=�

3
b ;

kzˇb for 8k2zˇ
2
b 	 !2p=�

3
b :

(3.5.26)

There is no reactive instability associated with this branch.
The lower frequency branch of (3.5.25) has a frequency that is real for k2zˇ

2
b >

!2p=�
3
b , and imaginary for k2zˇ

2
b < !

2
p=�

3
b :

! 

(
ikzˇb for 8k2zˇ

2
b � !2p=�

3
b ;

kzˇb � !p=21=2�3b for 8k2zˇ
2
b 	 !2p=�

3
b :

(3.5.27)



3.6 Weak-Anisotropy Approximation 151

Thus the lower frequency branch implies a beam-type instability for k2z ˇ
2
b < !

2
p=�

3
b .

The maximum growth rate is for k2zˇ
2
b D 3!2p=8�

3
b , and is

�max D 1

2
p
2

!p

�
3=2

b

; kz D
p
3

2
p
2

!p

�
3=2

b ˇb
: (3.5.28)

It follows that the maximum growth rate is smaller the higher the Lorentz factor
of the flow, so that maximum growth is when the flow is nonrelativistic or mildly
relativistic, �b 
 1.

Growth of Alfvén Waves

A beam instability can generate Alfvén waves. The resonance at z D !=kz D ˇb
occurs in the O mode for ˇb > 1=nA, with nA given by (3.5.12), and in the Alfvén
mode for ˇb < 1=nA. For Alfvén waves near the cross-over frequency one has
! 
 !1, with !1 given by (3.5.11).

For Alfvén waves at low frequency the conditions for beam-driven growth are
special. The Cerenkov resonance requires z D ˇ, that is, ! D kzˇb , and for
low frequency Alfvén waves this implies ˇb D 1=nA. In a pulsar magnetosphere,
the quantity nA varies with position in the magnetosphere, and in particular with
radial distance, r , along a given magnetic field line. A particular beam satisfies the
condition ˇb D 1=nA only at one point along a given field line, and if this condition
is satisfied, Alfvén waves over a wide frequency range resonate simultaneously
with the beam. In the case of a weak beam, this suggests that beam-driven Alfvén
turbulence develops only in localized regions where the resonance condition is
satisfied. Alfvén waves cannot escape directly from the plasma, and some nonlinear
process is required to convert the energy in the Alfvén turbulence into escaping
radiation in either the O or X-modes.

3.6 Weak-Anisotropy Approximation

The weak-anisotropy approximation, described in � 2.5.7 of volume 1, is based on
the assumption that the waves can be approximated as transverse. The wave equation
then reduces to a two-dimensional equation for the two transverse components of
A�.k/. The polarization of the wave modes is described by a single parameter,
chosen to be the axial ratio, T˙ D �1=T�, of the polarization ellipse of one of
the modes. The dispersion relations, written in terms of the refractive index, involve
an isotropic part, that is the same for both modes, and a part that has opposite sign
for the two modes and depends on T˙.
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3.6.1 Projection onto the Transverse Plane

The relevant choice of gauge is the radiation gauge, where there are components
only in the transverse plane, with zero time-like and longitudinal components. One
may choose the two 4-vectors t�; a�, defined by (1.1.26), as basis vectors. The wave
equation (3.1.2) reduces to the 2-dimensional equation

Œk2ı�� C t��.k/�A
�.k/ D 0; (3.6.1)

where �, � run over only the transverse components t; a. The axial ratio, T , is
defined in terms of the ratio of the t- and a-components ofA�, withAt W Aa D T W i .
Hence, (3.6.1) implies .k2C t t t /T C i t t a D 0, tat T C i.k2C taa/ D 0. Eliminating
T between these two equations gives the dispersion equation

k4 C .t t t C taa/k
2 C t t t t

a
a � t t a tat D 0: (3.6.2)

Equation (3.6.2) reproduces the dispersion equation (2.5.24) of volume 1, viz.

k4 C k2t .1/ C 1
2

n�
t .1/
�2 � t .2/

o
D 0; (3.6.3)

with the traces given explicitly by

t .1/ D t t t C taa; t .2/ D .t t t /
2 C .taa/

2 C 2t t a t
a
t : (3.6.4)

Eliminating k2 between the two equations leads to a quadratic equation for the axial
ratio:

T 2 � t t t � taa

i t t a
T C 1 D 0; (3.6.5)

where i t t a D �i tat is real.
The solutions of (3.6.3) with (3.6.4) are

k2 D k2˙ D �1
2
.t t t C taa/˙ 1

2

�
.t t t � taa/

2 C 4t t a t
a
t

�1=2
: (3.6.6)

The solutions of (3.6.5) are

T˙ D �.t t t � taa/˙ �
.t t t � taa/

2 C 4t t a t
a
t

�1=2
�2it t a ; (3.6.7)

with TCT� D �1. The two components of the equations imply

k2˙ D �taa � i t t a T˙ D �t t t C i t t a

T˙
: (3.6.8)
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Rest Frame of the Plasma

There is a preferred frame in which to apply the weak-anisotropy approximation:
the rest frame of the plasma. To see this, suppose that one tries to apply the weak-
anisotropy approximation in two different frames, the rest frame and a primed frame
in which that plasma has a bulk velocity. The transformation of the polarization
vector, described by (3.3.21)–(3.3.23), implies that if there is no longitudinal part
in the rest frame, there is a longitudinal part in the primed frame. Hence, it is
inconsistent to apply the weak-anisotropy approximation in both frames. That
the rest frame is the preferred frame can be seen by considering the case of a
cold unmagnetized plasma. In the rest frame, one can separate the response into
longitudinal and transverse parts, and the dispersion relation for transverse waves
can be written as either k2 D !2p or n2 D 1 � !2p=!

2. In the primed frame
the dispersion relation becomes k02 D !2p or n02 D 1 � !2p=!

02, but the waves
are not transverse, having a longitudinal component. The weak-anisotropy limit
involves a perturbation (to break the degeneracy of two transverse modes) about this
isotropic case. The theory is valid only if the unperturbed solution corresponds to a
transverse wave, and this is only the case in the rest frame of the plasma. The error
introduced by applying the weak-anisotropy approximation in the primed frame is
small: according to (3.3.23), the longitudinal part of the polarization in the primed
frame is proportional to n02�1 D �!2p=!02. To avoid inconsistency one needs to add
a proviso when applying the weak-anisotropy approximation in a frame other than
the rest frame: terms of order !2p=!

02 can be retained in the unperturbed refractive
index, but must be neglected in determining the axial ratio of the polarization vector.

3.6.2 Stokes Parameters

A transverse wave propagating through a weakly anisotropic plasma has its
polarization modified by generalized Faraday rotation. One can write an arbitrary
transverse polarization vector as a sum of components in the two modes, together
with the phase difference between them (the overall phase is arbitrary). The different
refractive indices of the two modes cause the relative phase to change systematically
as a function of distance along the ray path, and this leads to generalized Faraday
rotation. This may be described either in terms of the two amplitudes and the
relative phase difference (called the Jones calculus in optics) or in terms of the
Stokes parameters (the Mueller calculus in optics). The relation between these two
descriptions is summarized in � 2.5.7 of volume 1.

The transfer equation for the Stokes vector SA D .I;Q;U; V / is

dSA

d`
D rABSB � �ABSB; (3.6.9)



154 3 Waves in Magnetized Plasmas

where ` denotes distance along the ray path, and with

rAB D

0
BB@

0 0 0 0

0 0 ��V �U
0 �V 0 ��Q
0 ��U �Q 0

1
CCA ; �AB D

0
BB@

�I �Q �U �V
�Q �I 0 0

�U 0 �I 0

�V 0 0 �I

1
CCA ; (3.6.10)

which describe generalized Faraday rotation and absorption, respectively. The
parameters in (3.6.10) follow by writing t�� D t

��
0 C �t�� , where t��0 describes

the isotropic part, implying a refractive index n0, separating the anisotropic part
into hermitian and antihermitian parts, writing

��� D 1

n!c
�tH��; ��� D i

n!c
�tA��; (3.6.11)

and making the transformation from SU2 to O4 using the Pauli matrices,

I�� D 1
2

X
A

SA�
��
A ; SA D �

��
A I��; (3.6.12)

with

�
��
I D

�
1 0

0 1



; �

��
Q D

�
1 0

0 1



;

�
��
U D

�
0 1

1 0



; �

��
V D

�
0 �i
i 0



: (3.6.13)

The polarization of the radiation may be described by a point on the Poincaré
sphere. Writing q D Q=I , u D U=I , v D V=I , the mapping of a polarization onto
a point on the unit sphere follows from

.q; u; v/ D .sin 2� cos 2 ; sin 2� sin ; cos 2�/; (3.6.14)

with the angle 2 identified as the longitude and the angle 2� as the colatitude. The
natural modes correspond to antipodal points on the sphere.

Wave Modes as Stokes Eigenvectors

The properties of natural wave modes in the absence of damping are implicit in
the square matrix rAB in (3.6.10). Two of the four eigenvalues of rAB are zero. The
eigenvectors corresponding to eigenvalue zero are conserved quantities: one of these
is I D constant, which is obviously the case in the absence of damping, and the other
is �QQ C �UU C �V V , which is discussed below. The two non-trivial eigenvalues
are ˙�k, where�k D .�2QC�2U C�2V /1=2 is the difference in wave number between
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the two modes. The corresponding eigenvectors describe the polarization of the two
natural modes in terms of the Stokes parameters. It is convenient to write

.�Q; �U ; �V / D ��k .cos 2�B cos 2 B; cos 2�B sin 2 B; sin 2�B/; (3.6.15)

with

�k D .�2Q C �2U C �2V /
1=2; cos 2�B D T 2 � 1

T 2 C 1
; sin 2�B D 2T

T 2 C 1
:

(3.6.16)

The orthogonal polarizations of the two modes define a “mode axis” through the
sphere, with end points at 2�B; 2 B and 
 � 2�B; 2 B C 
 . In the absence of
damping, the evolution described by (3.6.9) corresponds to generalized Faraday
rotation: the polarization point rotates about the mode axis at constant colatitude
relative to it.

As already noted, in the absence of damping, �QQC �UU C �V V is conserved.
A physical interpretation of this conserved quantity is in terms of the mixture of the
two natural modes. With I D constant, the other conserved quantity is

cos 2� D cos 2 B cos 2� cos 2. �  B/C sin 2�B sin 2�: (3.6.17)

The extrema cos 2� D ˙1 correspond to radiation purely in one or other mode, and
cos 2� D 0 corresponds to an equal mixture of the two modes.

In the presence of polarization-dependent damping, the polarization of the
radiation changes, for cos2� ¤ ˙1, due to the mixture of the two modes evolving
as one mode is more strongly damped than the other. When the damping is negative,
the combination of generalized Faraday rotation and polarization-dependent maser
growth has unexpected implications on the resulting polarization [22].

3.6.3 High-Frequency Waves

The weak-anisotropy limit applies at sufficiently high frequencies. Specific applica-
tions are to high-frequency waves in a cold plasma, in a synchrotron-emitting gas
(discussed in � 2.7), and in a pulsar plasma.

High-Frequency Waves in Cold Plasma

In order to discuss the range of validity of the weak-anisotropy approximation, it
is useful to apply it to the magnetoionic waves. The exact solutions can then be
compared with the weak-anisotropy approximation to them.
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In the rest frame of a cold plasma, one has

t t t

!2
D S cos2 � C P sin2 � � 1; taa

!2
D S � 1;

t t a

!2
D � t

a
t

!2
D �iD cos �:

(3.6.18)

In the quadratic equation (3.6.5) for T , the coefficient of the term proportional to T
becomes, in the weak-anisotropy approximation,

� t t t � taa

i t t a
D � .P � S/ sin2 �

D cos �
D Y sin2 �

� cos �
; (3.6.19)

where the final expression follows from (1.2.38). Comparison with the exact
form (3.2.6) shows that .PS � S2 C D2/=PD is approximated by .P � S/=D.
Making this comparison for the magnetoionic case, the exact coefficient .1 � E/

Y=.1�X/ in (3.3.2) is approximated by Y . The latter approximation is well justified
at high frequency whereX andE are small. The refractive index is given by writing
k2� D !2.1 � n2� / with � D ˙, implying

n2� D S cos2 � C P sin2 � � D cos �

T�
: (3.6.20)

The expressions for T� and n2� reproduce the results (3.3.10) and (3.3.11) in the
high-frequency limit.

High-Frequency Waves in Pulsar Plasma

Pulsar plasma and a synchrotron-emitting gas are two examples of highly relativistic
plasmas. For the latter case, the projection onto the transverse (t-a) plane leads
to (2.7.19) with (2.7.20), or to (2.7.21) with (2.7.22). The application of the weak-
anisotropy approximation to a pulsar plasma is discussed here.

Before discussing details of the application to relativistic plasmas, it is relevant to
note some qualitative differences between the relativistic and nonrelativistic cases.
A mathematical difference is that the 13- and 23-components of t ij are zero in the
nonrelativistic case and nonzero in the relativistic case. When they are nonzero,
one has

t t t D cos2 � t11 C sin2 � t33 � 2 sin � cos � t13; t t a D cos � t12 C sin � t23;

(3.6.21)

with at a D t22. A qualitative difference arises from the relative magnitudes of
t t t � taa and t t a, whose ratio depends on angle, and for most angles it is small
in the nonrelativistic case and large in the relativistic case. As a consequence, the
natural modes are nearly circularly polarized at most angles in the nonrelativistic
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case, the exception being a small range of angles about � D 
=2, whereas the
natural modes are nearly linearly polarized at most angles in the relativistic case,
the exception being a small range of angles about parallel propagation, sin � 
 0.
Thus, qualitatively, the relativistic case is effectively the obverse of the cold-plasma
case, with the relative range of angles over which the QL and QT approximations
reversed. An implication is that for most angles of propagation in a relativistic
plasma, generalized Faraday rotation is primarily in �, as discussed above in
connection with the QT limit in a cold plasmas.

For a pulsar plasma, the relevant response tensor is that for a 1D pair plasma,
given by (2.6.7). Projecting (2.6.7) onto the transverse plane gives

t��.k/ D
X

˙

�0e
2n˙
m

�
1

�



!2 sin2 �

.ku/2
t�t�

C 1

.ku/2 �˝2
e

�
.cos � ku � sin � k?�v/2t�t� C .ku/2 a�a�

�i �˝e.cos � ku � sin � k?�v/.t�a� � a�t�/�
��

˙
; (3.6.22)

with cos � ku � sin � k?�v D �.! cos � � jkjv/. The combinations t t t � taa; t
t
a

implied by (3.6.22) can be rewritten in terms of the variables z D !=kz, y D
˝e=kz using (2.6.9) with (2.6.10) and the definitions (2.6.11) of the RPDFs
W.z/; R.z/; S.z/. One finds

t t t � taa D �!2p



z2W.z/ sin2 �

C tan2 �

.1C y2/

� �
1

�

�
C 1

zC � z�

X
˛D˙

˛.z2˛ � z2/R.z˛/

��
;

t t a D �i� !2p
y

.1C y2/ cos �

1

zC � z�

X
˛D˙

˛.z˛ � z cos2 �/S.z˛/; (3.6.23)

with z D !=kz, y D ˝e=kz, and z˙ defined by (2.6.10).
At low frequencies the O and X modes in a pulsar plasma are nearly linearly

polarized. This case may be treated by neglecting the gyrotropic term t t a. The
inclusion of gyrotropy t t a ¤ 0, causes the modes to be elliptically polarized, with
T˙ D 1

2
R˙ 1

2
.R2 C 4/1=2, and R given by

R D t t t � taa
i t t a

D � sin2 �

� cos �

˝e

!

"
z2W.z/ � !2

!2p

1 � ıˇ2

ˇ2A

#
: (3.6.24)
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The modes are nearly circularly polarized for R � 1 and nearly linearly polarized
for R 	 1. Let �c be the angle around which this change from circular to linear
occurs. SettingR D 1 in (3.6.24) and assuming vA 	 1, ıv2 
 1 and ! � ˝e , one
finds that �c 
 .� !=˝eh�i/1=2 is small, as expected. The result (3.6.24) applies in
the rest frame of the plasma. On Lorentz transforming to the pulsar frame in which
the plasma is streaming with a Lorentz factor �p, the angle at which the transition
from circular to linear polarization occurs is strongly modified, with the angle
shrinking in the forward direction and broadening in the backward direction [23].
The angle corresponding to R D 1 also broadens at higher frequencies, becoming
large near the cyclotron resonance.

3.6.4 Mode Coupling

Mode coupling results from gradients in the plasma parameters causing gradients
in the properties of the natural modes. In the presence of weak gradients, one
identifies the wave modes at each point as those of a locally homogeneous plasma.
The effect of the gradients in the plasma parameters is taken into account by
introducing mode coupling. The concept of a mode coupling is somewhat counter-
intuitive, in that it suggests that a physical process called ‘mode coupling’ exists.
This is not the case. The relevant physical process in an anisotropic medium is
the independent propagation of two orthogonal modes in a birefringent medium.
This actively changes the polarization of radiation passing through the medium,
due to generalized Faraday rotation. Gradients in the wave properties reduce the
effectiveness of the medium in causing the two modes to propagate independently.
The concept of mode coupling is particularly confusing when it is ‘strong’ and
negates the effect of the anisotropy, so that the initial polarization is preserved as
in an isotropic medium. Mode coupling is not a physical effect, but rather the partial
negation of the physical effects associated with the independent propagation of the
two modes in a homogeneous, birefringent medium.

The important gradient in a weakly anisotropic plasma is in the polarization of
the natural modes. The polarization vectors for the two modes may be written

e˙ D sin�˙t C i cos�˙ a; sin�˙ D T˙
.1C T 2˙/1=2

; cos�˙ D 1

.1C T 2˙/1=2
:

(3.6.25)

Without loss of generality one can choose TC > 0, with T� D �1=TC < 0. Then
one has �C � �� D 
=2. The derivative e0

˙, of e˙ with respect to distance along
the direction of the gradient, depends on the derivative �0

˙ D ˙�0C, and on the
derivatives � 0; 	0 of the polar angles of κ relative to the magnetic field direction b.
One has
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@t

@�
D �κ;

@t

@	
D cos � a;

@a

@	
D � cos � t � sin � κ: (3.6.26)

The derivative of (3.6.25) gives

e 0̇ D �0̇ .cos�˙t � i sin�˙ a/C 	0 cos �.sin�˙a � i cos�˙ t/

�.� 0 sin�˙ C i	0 cos�˙ sin �/κ: (3.6.27)

Ignoring the component along κ, (3.6.27) gives

�
e0C
e0�



D
� �i	0 cos � sin 2�C �0C � i	0 cos � cos 2�C

��0C C i	0 cos � cos 2�C �i	0 cos � sin 2�C


�
eC
e�



:

(3.6.28)

It follows from the off-diagonal terms in (3.6.28) that the coupling rate per unit
length from one mode to the other due to the inhomogeneity is proportional to the
rate of change of the shape of the polarization ellipse, described by �0C, or to the
rate of twisting of the magnetic field, described by 	0. These changes are opposed
by the components in the two modes getting out of phase as the rate per unit length
�k D !.nC � n�/. Mode coupling is strong or weak depending on which of these
two rates, respectively, is the larger.

Mode coupling in the weak-anisotropy approximation may be described in
terms of the Stokes parameters by allowing the matrices rAB , �AB in (3.6.9)
to be functions of distance along the ray path. Given a model for the medium,
one can integrate (3.6.9) with (3.6.10) between two points, `1; `2 along the ray
path, to find SA.`2/ in terms of SA.`1/. The relation can be written SA.`2/ D
MAB.`1; `2/SB.`1/, whereMAB.`1; `2/ is a 4�4matrix, called the Mueller matrix.
Mode coupling is identified by writing SA.`1/ and SA.`2/ as mixtures of the natural
modes defined by a locally homogeneous medium at `1 and `2, respectively, and
comparing these ratios at the two points. In weak mode coupling, radiation with unit
amplitude purely in one mode at `1 develops a small admixture of the other mode at
`2. In strong mode coupling, radiation with unit amplitude purely in one mode at `1
becomes a mixture of the two modes with their amplitudes varying rapidly between
0 and 
 1 as a function of `2 � `1.
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Chapter 4
Gyromagnetic Processes

Gyromagnetic emission is the generic name for emission due to the spiraling motion
of a particle in a magnetic field. Gyromagnetic emission by nonrelativistic particles
is referred to as cyclotron emission, which is dominated by the fundamental and
first few harmonics of the cyclotron frequency. Gyromagnetic emission by highly
relativistic particles is referred to as synchrotron emission, which is dominated
by very high harmonics which overlap and form a continuum. These emission
processes are treated in this chapter. The generalization of Thomson scattering to
the scattering of waves in a magnetized plasma is also discussed.

General formulae for gyromagnetic emission are written down in � 4.1. The
special case of emission in vacuo is treated in � 4.2. Cyclotron emission is discussed
in � 4.3 with emphasis on a relativistic effect that is important for electron cyclotron
maser emission. Synchrotron emission is treated in � 4.4. Scattering of waves by
electrons in a magnetic field is discussed in � 4.5.

4.1 Gyromagnetic Emission

Gyromagnetic emission is described here in terms of a semi-classical probability of
emission. The semi-classical approach facilitates the derivation of kinetic equations
that describe the effect of gyromagnetic emission and absorption on the distributions
of waves and particles.

4.1.1 Probability of Emission for Periodic Motion

A particle spiraling in a magnetic field is one example of a general class of periodic
motions. It is convenient to start with the general case of a charge in periodic motion
emitting radiation and then to apply the general result to the particular case of
gyromagnetic emission.
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A general formula is derived in � 5.1 of volume 1 for emission of radiation in an
arbitrary wave mode M due to an arbitrary extraneous current Jext. The emission
formula may be written in terms of the probability per unit time that a wave quantum
is emitted in the mode M in the range d3k=.2
/3. An explicit expression for this
quantity is

wM .k/ D �0RM .k/

T j!M.k/j je�
M�.k/J

�
ext.kM /j2; (4.1.1)

where T is an arbitrarily long normalization time. For a particle whose orbit is
x D X.�/, implying the 4-velocity u�.�/ D dX�.�/=d� , the current is

J�.k/ D q

Z
d� u�.�/ eikX.�/: (4.1.2)

For periodic motion at a proper frequency !0, the orbit is of the form

X�.�/ D x
�
0 C Nu�� C QX�.�/; QX�.�C 2
/ D QX�.�/; � D !0�; (4.1.3)

with the 4-velocity given by

u�.�/ D Nu C Qu�.�/; Qu�.�/ D !0 d QX�.�/=d�: (4.1.4)

One may expand the periodic motion in Fourier series by writing

u�.�/ eik QX.!0�/ D
1X

aD�1
U�.a; k/ eia!0�;

U �.a; k/ D !0

2


Z 2
=!0

0

d� u�.�/ e�ia!0� eik QX.!0�/: (4.1.5)

The 4-current becomes

J�.k/ D qeikx0
1X

aD�1
U�.a; k/ 2
ı.k Nu � a!0/; (4.1.6)

which is identified with J�ext.k/ in (4.1.2).

Square of ı-Function

On inserting (4.1.6) into (4.1.1), the square of the ı-function appears, and this is
rewritten using Œ2
ı.k Nu � a!0/�

2 D .T= N�/2
ı.k Nu � a!0/, where Nu� D Œ N�; N� Nv�
implies k Nu D N�.! � k � Nv/ in the ı-function. The probability of emission becomes
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wM .k/ D �0q
2RM.k/

N� j!M.k/j
X
a

je�
M�.k/U

�.a; kM /j22
ı.kM Nu � a!0/: (4.1.7)

The probability (4.1.7) describes emission by a particle executing an arbitrary
periodic motion, at proper frequency !0 with an average (over the periodic motion)
4-velocity Nu. The emission separates into contributions from harmonics of the
oscillation frequency, with the harmonic number, a, taking on all integer values.
However, depending on the wave properties, emission is possible at a specific
harmonic only if the resonance condition, described by the ı-function in (4.1.7),
can be satisfied. For example, for waves with phase speed greater than the speed of
light, !=jkj > 1, k Nu is positive for jvj < 1, and emission at s � 0 is forbidden.

Probability of Gyromagnetic Emission

Gyromagnetic motion is an example of such periodic motion, consisting of circular
motion perpendicular to B plus constant rectilinear motion parallel to B. The
circular motion about the magnetic field is periodic in the gyrophase, 	, which
evolves a 	 D ˝0� D ˝t , with ˝ D ˝0=� , where ˝0 D jqjB=m is the cyclotron
frequency. The average motion corresponds to Nu� ! u�k . The current (2.1.31) due
to a spiraling charge is of the form (4.1.6), specifically,

J�.k/ D qeikx0
1X

aD�1
eia� U �.a; k/ 2
ı

�
.ku/k � a˝0

�
; (4.1.8)

with the 4-vector U�.a; k/ having the explicit form given by (2.1.28). The
probability of gyromagnetic emission in the mode M at the ath gyroharmonic
follows from (4.1.7):

wM.a; k; p/ D q2RM .k/

„"0�!M.k/
ˇ̌
e�
M�.k/U

�.a; kM /
ˇ̌2
2
ı

�
.kM u/k � a˝0

�
: (4.1.9)

4.1.2 Gyroresonance Condition

The gyroresonance condition, also called the Doppler condition, implied by the
ı-function in (4.1.9) is .ku/k � a˝0 D 0 with k D kM for waves in the mode
M . Classically, the resonance condition is interpreted by noting that .ku/k is the
frequency of the wave in the frame in which the gyrocenter of the particle is at rest.
Hence the resonance corresponds to the wave frequency being an integral multiple,
a D 0;˙1;˙2; : : :; of the gyrofrequency of the particle in the inertial frame in
which the motion of the gyrocenter is at rest. Resonance at a > 0 is referred to as
the normal Doppler effect, and resonance at a < 0 as the anomalous Doppler effect.
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(The resonance at a D 0 is sometimes referred to as the Cerenkov condition, but this
can lead to confusion with the resonance condition for an unmagnetized particle.)

In a semi-classical theory, in which the particles are treated quantum mechan-
ically and the waves are treated classically, the resonance condition follows from
conservation of energy and momentum during the emission of a wave quantum.
A relativistic quantum treatment of a particle in a magnetic field leads to energy
eigenvalues (ordinary units are used to discuss the quantum recoil)

"n.pz/ D .m2c4 C p2z c
2 C 2n„˝0mc

2/1=2; (4.1.10)

where n D 0; 1; 2; : : : is the Landau quantum number. For spin- 1
2

particles one has
2n D 2l C 1 C s, where l D 0; 1; 2; : : : describes the orbital motion and s D ˙1
is the spin quantum number. The classical limit corresponds to „ ! 0, n ! 1,
„n ! p2?=˝0m.

As a result of emission, pz changes to p0
z D pz � „kz and the energy of the

particle decreases by „!. Suppose that the initial energy is given by (4.1.10) and
that the final Landau quantum number is n0 D n�a, where a is an integer. The final
energy satisfies (in ordinary units)

"n0.p0
z/ D "n�a.pz � „kz/ D "n.pz/� „!: (4.1.11)

On squaring (4.1.11) and using (4.1.10) one obtains (in ordinary units)

"n.pz/! � „pzkz � a˝0mc
2 � „.!2 � k2z c

2/=2 D 0: (4.1.12)

An expansion in „ gives (in ordinary units)

.ku/k � a˝0 � „.!2 � k2z c
2/=2mc2 C � � � D 0; (4.1.13)

where the neglected terms, denoted C � � � , are of higher order in „. The lowest order
term, .ku/k � a˝0 D 0, in (4.1.13) reproduces the classical Doppler condition.

Quantum mechanically, the normal and anomalous Doppler effects correspond
to the particle jumping to lower and higher n, respectively, on emission of a wave
quantum. That is, with n ! n � a in (4.1.10), the contribution 2n„˝0mc

2 of the
motion perpendicular to the field lines decreases for a > 0 and increases for a < 0.
The total energy of the particle must decrease, and in the anomalous Doppler effect
this occurs due to the decrease in p2z exceeding the increase in p2? D 2n„˝0m.

4.1.3 Quantum Recoil

The quantum recoil corresponds to the term of order „ in (4.1.13). This is interpreted
as the recoil due to the emission. The resonance conditions for absorption differs
from that for emission in that the quantum recoil has the opposite sign; this
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corresponds to reversing the signs of !; kz in (4.1.11)–(4.1.13). In a relativistic
quantum treatment of the response of an electron gas, there are contributions
corresponding to virtual emission and virtual absorption, and these contribute
through resonant denominators with both signs of the recoil term.

An important difference between a relativistic and a nonrelativistic treatment
relates to the form of the quantum recoil. Suppose that one assumes the nonrela-
tivistic form for the energy of a particle (ordinary units): "n.pz/ D mc2 Cp2n=2mC
p2z =2m. With pn D .2njqjB„/1=2, one has p2n=2m D n„˝0, and the Landau
quantum number, n D lC 1

2
.sC1/, can be interpreted as lC 1

2
from the quantization

of the circular motion, which is simple harmonic with frequency ˝0 D eB=m and
l D 0; 1; 2; : : :, and 1

2
s from the spin. When one considers an emission process,

described by (4.1.11), repeating the calculation using the nonrelativistic form for
the energy leads to, in place of (4.1.13),

! � kzvz � a˝0 C „k2z =2m D 0; (4.1.14)

with vz D pz=m. This does not agree with the limit of (4.1.13) in which the Lorentz
factor is set to unity in writing .ku/k D �.!�kzvz/ ! !�kzvz; the relativistically
correct form has �.!2=c2 � k2z / in place of k2z in the quantum recoil.

There is a paradox: the nonrelativistic limit of the relativistic quantum treatment
is inconsistent with the nonrelativistic quantum treatment. The resolution is that the
nonrelativistic limit is formally c2 ! 1, and in this limit the additional term !2=c2

should indeed be neglected. However, the implication is that a strictly nonrelativistic
quantum treatment of emission, absorption and dispersion is incorrect when applied
to waves with !2=c2 �>k2z . Put another way, nonrelativistic theory requires c2 ! 1,
and it is formally inconsistent to combine nonrelativistic theory with Maxwell’s
equation, in which finite c plays an essential role.

4.1.4 Resonance Ellipses

The gyroresonance condition is amenable to a graphical interpretation. If one plots
the resonance curve in v?–vz space for given ! and kz, the resonance condition for
each harmonic defines a resonance ellipse. The resonance ellipse corresponds to all
the values of v? and vz for which resonance with a wave at given !, kz and a is
possible. That is, a given wave resonates with all particles that lie on the resonance
ellipse that it defines. Similarly, a given particle resonates with all waves that define
resonance ellipses that pass through the representative point of the particle in v?–vz

space.
The resonance ellipse is centered on the vz axis at vz D vc, with semi-major axis

A perpendicular to the vz axis, and with eccentricity e D .A2 � B2/1=2=A. This
ellipse is described by
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v⊥

vII

(b)

(a)

(c)

Fig. 4.1 Examples of
resonance ellipses: (a) a
semicircle centered on the
origin, (b) an ellipse inside
v D 1, (c) an ellipse touching
v D 1

.vz � vc/
2

B2
C v2?
A2

D 1; vc D !kz

a2˝2
0 C k2z

;

A2 D a2˝2
0 C k2z � !2

a2˝2
0 C k2z

; e2 D k2z

a2˝2
0 C k2z

: (4.1.15)

Some examples of resonance ellipses in v?–vz space are illustrated schematically in
Fig. 4.1. For !2 < k2z the resonance ellipse touches the circle, v D 1, and the outer
segment of the curve is nonphysical, as shown by the dashed segment in Fig. 4.1.
The resonance ellipse in vz-v? space is convenient when considering nonrelativistic
and mildly relativistic particles, but not for relativistic particles, which are near the
unit circle, v 
 1.

Alternatively, one may plot the resonance condition in pz-p? space. In this case
the resonance condition becomes

.pz � pc/
2

m2 QA2 C p2?
m2 QA2 D 1; pc D a˝0mkz

!2 � k2z
;

QA2 D !2.a2˝2
0 � !2 C k2z /

.!2 � k2z /2
; QB2 D a2˝2

0 � !2 C k2z

!2 � k2z
: (4.1.16)

For !2 > k2z , (4.1.16) defines an ellipse with major axis along the pz-axis. For
!2 < k2z , QB2 in (4.1.16) is negative and the curve is an hyperbola. The dashed
segment of curve (c) in Fig. 4.1 correspond to a nonphysical arm of the hyperbola
in p?-pz space. For emission in vacuo, with kz D ! cos � , (4.1.16) reduces to

.jpj cos˛ � pc/
2

m2 QA2 C jpj2 sin2 ˛

m2 Qb2 D 1; pc D a˝0m cos �

! sin2 �
;

QA2 D a2˝2
0 � !2 sin2 �

!2 sin4 �
; QB2 D QA2 sin2 �; (4.1.17)

where the cylindrical coordinates p?, pz are rewritten in terms of polar coordinates
jpj, ˛. It follows that emission at given ! and � is possible in vacuo only at
harmonics, a, which satisfy ! < a˝0= sin � .
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4.1.5 Differential Changes

In semi-classical theory, changes due to emission and absorption may be treated
in terms of a differential operator. In the unmagnetized case, the change due to
p ! p � k is treated using the differential operator k˛@=@p˛. In the magnetized
case the changes for emission are p�k ! p

�

k � k
�

k and n ! n � a. The differential
operator corresponds to

k˛
@

@p˛
! k˛k

@

@p˛k
C a

@

@n
:

In the classical limit, 2n˝0m is interpreted as p2? D m2�2v2?. Hence, the n-
derivative reduces to its classical counterpart

a
@

@n
D a˝

v?
@

@p?
D .kp/k

p?
@

@p?
; (4.1.18)

where in the final form the Doppler condition is used.
The transfer equation for the waves due to gyromagnetic emission and absorption

by a distribution of particles can be written in the form

@�T
��
M .k/ D S�M .k/� �M .k/ P

�
M .k/; (4.1.19)

where T ��M .k/ D v
�
gM.k/k

�
MNM.k/ is the energy-momentum tensor for the waves,

and P�
M .k/ D k�MNM.k/ is the 4-momentum in the waves. In (4.1.19) spontaneous

emission is described by the term

S�M .k/ D
Z

d4p

.2
/4
k�M �wM .k; p/ F.p/: (4.1.20)

The final term in (4.1.19) describes absorption, with the absorption coefficient
given by

�M .k/ D �
1X

aD�1

Z
d4p

.2
/4
� wM .a; k; p/ ODF.p/;

OD D a˝

v?
@

@p?
C k˛k

@

@p˛k
: (4.1.21)

There is a factor k�M that is common to all three terms in (4.1.19), and when
this factor is omitted the transfer equation describes the evolution of the occupation
number,NM.k/, for waves in the modeM . The transfer equation becomes

DNM.k/

Dt
D PNM.k/ � �M .k/NM.k/; (4.1.22)
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with D=Dt D v
�
gM.k/@� and with the spontaneous emission described by

PNM.k/ D
Z

d4p

.2
/4
�wM .k; p/ F.p/: (4.1.23)

4.1.6 Quasilinear Equations

The covariant version of the quasilinear equation that describes the effect of
gyromagnetic emission and absorption on a distribution of magnetized particles is
derived in an analogous manner to the quasilinear equation for the unmagnetized
case, cf. � 5.2 of volume 1. The quasilinear equation for the waves is given by
either (4.1.20) or (4.1.23).

The quasilinear equation for the particles is obtained by considering transitions
q $ q0, and q00 $ q, with q; q0; q00 denotingp�k ; n; p�k �k�k ; n�a; p�k Ck�k ; nCa,
respectively. The probability of emission for these transitions is wM .a; k; p/ and
wM.a; k; p00/, respectively. Let nq denote the occupation number of the particles
in the state q D p

�

k ; n. Transitions q ! q0 and q ! q00 decrease nq at rates
/ wM.a; k; p/nqŒ1 C NM.k/� and / wM.a; k; p00/nq NM.k/, respectively, and
transitions q0 ! q and q00 ! q increase nq at rates / wM .a; k; p/nq0 NM.k/ and
/ wM .a; k; p00/nq00 Œ1CNM.k/�, respectively. On expanding the net rate of change
of nq in powers of „ and a=n, the leading terms give the quasilinear equation

dF.p/

d�
D 1

p?
@

@p?

(
p?

"
�A?.p/ F.p/CD??.p/

@F.p/

@p?
CD�

?k.p/
@F.p/

@p�k

#)

C @

@p
�

k

�
�A�k .p/ F.p/CD�

k?.p/
@F.p/

@p?
CD��

kk .p/
@F.p/

@p�

�
; (4.1.24)

where the subscript M denoting the wave mode is omitted, and nq is re-interpreted
in terms of the distribution function F.p/. The coefficients

 
A?.p/
A
�

k .p/

!
D �

1X
aD�1

Z
d3k

.2
/3
�wM.a; k; p/

 
a˝=v?
k
�

k

!
(4.1.25)

describe the effect of spontaneous emission. The quasilinear diffusion coefficients
in (4.1.24) are
0
BB@
D??.p/
D
�

k?.p/
D
��

kk .p/

1
CCA D

1X
aD�1

Z
d3k

.2
/3
�wM.a; k; p/NM .k/

0
BB@
.a˝=v?/2

.a˝=v?/k�k
k
�

k k
�
k

1
CCA ; (4.1.26)

with D�

?k.p/ D D
�

k?.p/.
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The kinetic equations (4.1.22) and (4.1.25) imply that energy and parallel
momentum are conserved for the sum of the particle and wave systems. The
conservation laws apply separately for spontaneous emission and the induced
processes. Momentum perpendicular to the magnetic field is not conserved.

4.2 Gyromagnetic Emission in Vacuo

The classical theory of gyromagnetic emission can be treated exactly, in the sense
that the power radiated and some other important quantities can be calculated
in closed form, starting from the probability (4.1.9). Besides being of interest
in themselves, exact results are useful as a basis for various approximations to
gyroemission, including the synchrotron limit.

4.2.1 Gyromagnetic Emission of Transverse Waves

For transverse waves in vacuo there are two degenerate states of polarization. All rel-
evant information on the polarization is retained by modifying the probability (4.1.9)
so that it becomes the polarization tensor

w˛ˇ.a; k; p/ D q2 QU �˛
a

QUˇ
a

2"0�!
2
ı

�
.ku/k � a˝0

�
; (4.2.1)

where QU�
a is U�.a; k/, as given by (2.1.27) with (2.1.28), projected onto the

transverse plane. The projection onto the transverse plane is carried out by (a) setting
both the time-component and the longitudinal component of U�.a; k/ to zero, and
(b) choosing two basis vectors to span the remaining two-dimensional transverse
plane. Let the two transverse directions be those introduced in (1.1.25), specifically,

t D .cos �; 0;� sin �/; a D .0; 1; 0/; (4.2.2)

with k D !.sin �; 0; cos �/. This corresponds to  D 0 in (2.1.28), which gives

QU˛
a D

�
cos � � vz

sin �
Ja.ax/; i�v?J 0

a.ax/



; x D v? sin �

1 � vz cos �
; (4.2.3)

with � D 1 for electrons, and where the resonance condition, .ku/k � a˝0 D 0, is
used.

Emission at the ath harmonic is completely polarized. The polarization vector
corresponds to an elliptical polarization with axial ratio
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T D �
cos � � vz

v? sin �

Ja.ax/

J 0
a.ax/

; (4.2.4)

relative to the t-direction. For nonrelativistic particles, the Bessel functions are
approximated by the leading term in their power series expansion, and (4.2.4) gives
T 
 �.cos � � vz/=.1 � vz cos �/ 
 � cos � . Emission by an electron (� D 1)
has a right hand (T > 0) circular component for cos � > 0. Emission by a
highly relativistic particle is dominated by a broad range of high harmonics, and
although the emission at each harmonic is completely polarized, the resulting sum
over harmonics leads to partial polarization. The polarization in this case needs to
be determined in other ways, rather than using (4.2.4).

Power in Gyromagnetic Emission in Vacuo

Starting from the probability (4.2.1) for emission in vacuo it is possible to evaluated
several quantities explicitly by performing the sum over a and integral over k-space.
Consider the power radiated, written as a polarization tensor:

P˛ˇ D
1X
aD1

Z
d3k

.2
/3
! w˛ˇ.a; k; p/: (4.2.5)

The total power radiated is P D P tt C Paa, and the power radiated in either linear
polarization is P tt , Paa. One may evaluate the integral in (4.2.5) by introducing
polar coordinates: the integral over azimuthal angle, 	, is trivial, and the integral
over jkj D ! is performed over the ı-function. One finds

P˛ˇ D
1X
aD1

q2a2˝2
0

4
"0�2

Z 1

�1
d cos �

QU �˛
a

QUˇ
a

.1 � vz cos �/3
: (4.2.6)

The P tt , Paa terms can be evaluated exactly, and only these components are
considered in the remainder of the calculation. It is possible to perform the
calculation either by integrating over cos � and then performing the sum over a, or
by carrying out these steps in the opposite order. Both procedures are summarized
below.

The cos �-integral in (4.2.6) is performed after making a Lorentz transformation
to the frame in which the gyrocenter is at rest. The power radiated is an invariant,
and so is unchanged by this transformation. Let the particle have speed v in the
laboratory frame and speed v0 in this rest frame. Let the emitted wave be at an angle
� 0 in this rest frame. One has

cos � 0 D cos � � vz

1 � vz cos �
; v0 sin � 0 D v? sin �

1 � vz cos �
; v0 D v?

.1 � v2z /
1=2
: (4.2.7)
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One has d cos �=.1 � vz cos �/2 D d cos � 0=.1 � v2z /, and 1=.1� vz cos �/ D .1C
vz cos � 0/=.1�v2z /. The remainder of the integrands for P tt , Paa are even functions
of cos � 0, so that the term vz cos � 0 does not contribute to them. One requires the
following integral identities:

Z 1

�1
d cos � 0

 
J 2t .av

0 sin � 0/
J 2t .av

0 sin � 0/= sin2 � 0

!
D 2

Z v0

0

dy

 
J2t .2ay/=v

0

J2t .2ay/=y

!
: (4.2.8)

Using the recursion relations (2.1.25) and (2.1.26) for the Bessel functions, one
obtains

P tt;aa D
X
aD1

2q2a2˝2
0

4
"0
v02.1 � v02/ Gtt;aa

a ;

Gtt
a D 1

v02

Z v0

0

dy
J2a.2ay/

y
� 1

v03

Z v0

0

dy J2a.2ay/;

Gaa
a D 1

av0 J
0
2a.2av

0/� 1

v02

Z v0

0

dy

y
J2a.2ay/C 1

v0

Z v0

0

dy J2a.2ay/: (4.2.9)

The next step is to perform the sum over a. The relevant sums are Kapteyn series,
and the following series were first evaluated explicitly for the present purpose by
Schott [9]:

X
aD1

a2J2a.2ay/ D y2.1C y2/

2.1� y2/4
;

X
aD1

aJ 0
2a.2ay/ D y

2.1� y2/2 ; (4.2.10)

which apply for 0 � y < 1. The remaining integral is elementary, and the final
result for the power radiated is

P D P tt C Paa D q2˝2
0p

2
?

6
"0m2
D q2˝2

0�
2v2?

6
"0
; (4.2.11)

P tt � Paa

P tt C Paa
D �2C v2? � 2v2z

4.1 � v2z /
D � 2m2 C 3p2?

4.m2 C p2?/
: (4.2.12)

The total power P is well known, and can be derived from a generalization of
the Larmor formula; it depends only on the perpendicular component, p?, of
momentum, and is independent of pz.

Formula (4.2.12) shows that the power in gyromagnetic emission is preferentially
polarized along a rather than along t. In the nonrelativistic limit (4.2.12) implies a
degree of polarization 
�1=2, but this is not particularly meaningful; it refers to an
average over all angles and according to (4.2.4) the polarization depends relatively
strongly on angle in the nonrelativistic limit. In the highly relativistic limit, the
degree of polarization implied by (4.2.12) is 
�3=4. This is a characteristic value
for the polarization of synchrotron emission; the actual polarization of synchrotron
emission is a function of frequency.
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Angular Distribution of Gyromagnetic Emission

An alternative procedure involves performing the sum over a in (4.2.6) before
carrying out the integral over � . The required summation formulae were also
evaluated by Schott [9] for this purpose:

X
aD1

a2J 2a .ax/ D x2.4C x2/

16.1� x2/7=2 ;
X
aD1

a2J 02
a .ax/ D 4C 3x2

16.1� x2/5=2
; (4.2.13)

for 0 � x < 1. One finds

P D q2˝2
0v

2?
64
"0�2

Z 1

�1
d cos �



.cos � � vz/

2Œ4.1 � vz cos �/2 C v2? sin2 ��

Œ.1 � vz cos �/2 � v2? sin2 ��7=2

C 4.1� vz cos �/2 C 3v2? sin2 �

Œ.1 � vz cos �/2 � v2? sin2 ��5=2

�
: (4.2.14)

The integral over cos � is performed using standard integral identities. The re-
sult (4.2.11) and (4.2.12) is reproduced.

4.2.2 Radiation Reaction to Gyromagnetic Emission

Gyromagnetic emission in vacuo is one specific case where quasilinear theory can
be compared with the radiation reaction force. The quasilinear coefficients may be
used to determine the mean rates of change of p?, pz, ", ˛ for a particle due to
its gyromagnetic emission, and these rates can be compared with analogous results
derived from the radiation reaction force.

Quasilinear Coefficients

Using the techniques outlined above, it is possible to evaluate the quasilinear
coefficients A?.p/, A�k .p/, as given by (4.1.25), for gyromagnetic emission in
vacuo. The coefficients (4.5.7) are

0
BB@
A?.p/
A0k.p/
A3k.p/

1
CCA D �

1X
aD1

Z
d3k

.2
/3

0
B@
a˝0=�v?

!

! cos �

1
CA �w˛ˇ.a; k; p/: (4.2.15)

The evaluation of these coefficients closely parallels the evaluation of P . One finds
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A?.p/ D �1 � v2z

v2?
�P; A0k.p/ D ��P; A3k.p/ D ��vz P; (4.2.16)

with P given by (4.2.11).
The mean rate of change of the 4-momentum of the particle per unit time follows

from (4.2.16), which implies

�
dp?
dt

�
D �1 � v2z

v?
P;

�
d"

dt

�
D �P;

�
dpz

dt

�
D ��vz P: (4.2.17)

For a nonrelativistic particle, v?; jvzj � 1, (4.2.17) implies that the rate of change
of pz is small in comparison with the rate of change of p?, with v? hdp?=dti 

hd"=dti. However, for a highly relativistic particle, v ! 1, (4.2.17) implies
hdp?=dti 
 � sin ˛ P , hdpz=dti 
 � cos˛ P , where ˛ is the pitch angle. In this
case the rate of change in the pitch angle is small, such that the particle loses energy
essentially at constant ˛. This is seen directly by comparing the rates of change of
p and ˛: �

dp

dt

�
D �P

v
;

�
d˛

dt

�
D � P

m�3v2
cot˛; (4.2.18)

with P / sin2 ˛ given by (4.2.14). Comparing the rates of change of p and
˛, (4.2.18) implies that they are in the ratio p�1 hdp=dti W hd˛=dti D tan˛ W
1=�2v, so that the change in ˛ is small for �2 	 1.

A distribution of particles that is initially isotropic becomes anisotropic as a result
of gyromagnetic losses. For highly relativistic particles, each particle moves along
a nearly radial line in p-space, that is, with jpj decreasing at nearly constant ˛. The
anisotropy arises because P / sin2 ˛ implies that particles with larger ˛ move to
smaller jpj faster than those with smaller ˛. Particles that lie initially on a circle in
p?-pz space, with p2? C p2z D p20 initially say, define an ellipse with semi-major
axis along the pz-axis fixed at p0, and with the axial ratio of the ellipse decreasing
with time. For nonrelativistic particles the trajectory is along a line that is radial in
the cylindrical sense: decreasing p? at constant pz.

The diffusion coefficients in the quasilinear equation (4.1.24) cannot be evaluated
in the same way even for emission in vacuo. The reason is that these terms depend on
the distribution of waves, e.g., described by the occupation number N.!; �/. After
performing the integral over ! using the ı-function, as in the derivation of (4.2.6),
one has ! ! a˝0=�.1 � vz cos �/, so that the occupation number becomes an
implicit function of both a and � , precluding the sum over a being performed exactly
and precluding the integral over cos � being performed exactly even for an isotropic
distribution of radiation.
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Generalized Larmor Formula

The power radiated in vacuo by an accelerated charge can be treated by combining
the Larmor formula with a Lorentz transformation. This approach leads to a general
formula for the power radiated in vacuo, but it does not give any information on how
the radiation is distributed in frequency and angle, nor on its polarization.

The Larmor formula gives the power radiated in vacuo by an accelerated charge
in its instantaneous rest frame:

P.t/ D q2ja.t/j2
6
"0

; (4.2.19)

where a.t/ is the instantaneous acceleration. The acceleration in (4.2.19) is related
to the force acting on the particle by a.t/ D F .t/=m. In the instantaneous rest
frame one has v D 0, � D 1, and a.t/ D Pv.t/, where the dot implies differentiation
with respect to t . In terms of 4-vectors, in the rest frame one has u� D Œ1; 0�,
a� D du�=d� D Œ0; Pv�, with d� D dt in this frame. Using a�a� D �Pv2, (4.2.19)
becomes

P D �q
2a�a�

6
"0
; (4.2.20)

in the rest frame. The left hand side of (4.2.20) is the ratio of the time components
of two 4-vectors, and hence is an invariant, and the right hand side is already in
invariant form. Hence the special theory of relativity implies that (4.2.20) applies in
all inertial frames. It is therefore the desired generalization of the Larmor formula.

In the laboratory frame, in which the particle has instantaneous velocity
v, (4.2.20) is rewritten in 3-vector notation by noting the relations

a� D �4Œv � Pv; v � Pv v C .1 � v2/ Pv�; a�a� D ��6� Pv2 � jv � Pvj2�: (4.2.21)

The generalization of the Larmor formula is

P D q2

6
"0

Pv2 � jv � Pvj2
.1 � v2/3

: (4.2.22)

The acceleration is a somewhat artificial quantity for a relativistic particle and it
is more relevant to write (4.2.22) in terms of the 4-force, dp�=d� , acting on the
particle. One has m2jaj2 D �.dp�=d�/.dp�=d�/, and hence the Larmor formula
has the covariant generalization

P D � q2

6
"0m2

dp�

d�

dp�

d�
; (4.2.23)

which applies in an arbitrary frame.
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The power in gyromagnetic radiation follows by substituting the equation of
motion, dp�=d� D qF

��
0 u� , into (4.2.23). Writing F��

0 D Bf �� , the right hand
side of (4.2.23) contains a factor

f �˛u˛f�
ˇuˇ D g

˛ˇ

? u˛uˇ D �u2? D �p2?=m2:

Then (4.2.23) reproduces the result (4.2.11) for the power radiated, P .

Radiation Reaction 4-Force

The radiation reaction force in conventional classical electrodynamics is

F react.t/ D q2 Rv.t/
6
"0

; (4.2.24)

where a dot denotes differentiation with respect to t . The covariant generalization
to the radiation reaction 4-force was written down by Dirac [2]:

F�
react D q2

6
"0m

�
d2p�

d�2
C dp�

d�

dp�

d�

p�

m2

�
: (4.2.25)

On inserting the equation of motion dp�=d� D qF
��
0 u� , and proceeding as in the

derivation of (4.2.23), one finds

F�
react D � q4B2

6
"0m3

m2p
�

? C p2?p�

m2
D �P m2p

�

? C p2?p�

mp2?
; (4.2.26)

which is the radiation reaction 4-force for gyromagnetic emission in vacuo.
Comparison of (4.2.26) and (4.2.16) shows that the parallel components of F�

react

and A�k are equal. The perpendicular componentsF�
react reproduceA�? provided that

one averages (4.2.26) over gyrophase, and notes the identity .m2 C p2?/=p2? D
.1�v2z /=v2?. This confirms that in the case of gyromagnetic emission the terms in the
quasilinear equation (4.1.24) that describe the effects of spontaneous emission are
equivalent to radiation reaction 4-force in conventional classical electrodynamics.

4.3 Cyclotron Emission

Cyclotron emission is gyromagnetic emission from nonrelativistic particles. In this
section, cyclotron emission and absorption in a nonrelativistic plasma are discussed.
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4.3.1 Emissivity in a Magnetoionic Mode

The only radiation that can escape from a nonrelativistic magnetized plasma is in the
magnetoionic modes, specifically, either in the x mode or the o mode. The relevant
wave properties are summarized in � 3.3.1. The polarization vector, (3.1.19), and the
ratio of electric energy are

e�� D L�

� C T� t

� C ia�

.L2� C T 2� C 1/1=2
; R� D 1CL2� C T 2�

2.1C T 2� /n� @.!n� /=@!
; (4.3.1)

with � labeling the magnetoionic waves, the high frequency branches of which are
labeled o; x. It is conventional to introduce the emissivity, ��.a; !; �/, to describe
the emission by a single particle at the ath harmonic in the mode � . The emissivity
is the power radiated per unit frequency and per unit solid angle and hence it is
related to the probability for gyromagnetic emission by

2


Z 1

0

d!

Z 1

�1
d cos � ��.a; !; �/ D

Z
d3k

.2
/3
! w� .a; k; p/; (4.3.2)

with w� .a; k; p/ given by (4.1.9). A factor @Œ!n� �=@! from the change of variable
of integration from jkj D n�! to ! in (4.3.2) cancels with this factor in (4.3.1). The
emissivity at the ath harmonic reduces to

��.a; !; �/ D q2n�!
2v2 sin2 ˛

8
2"0.1C T 2� /

ˇ̌
ˇ̌L� sin � C T�.cos � � n�v cos˛/

n�v sin ˛ sin �
Ja C �J 0

a

ˇ̌
ˇ̌
2

� ıŒ!.1 � n�v cos � cos˛/ � a˝0�; (4.3.3)

where the arguments .!; �/ of n� , T� and L� are omitted, and similarly the
argument .!=˝0/n�v sin ˛ sin � of Ja and J 0

a is omitted. The sign � is equal to
C1 for electrons,˝0 ! ˝e.

A form of the transfer equation in terms of these variables is

vg�
dI� .!; �/

d`
D J� .!; �/� ��.!; �/I� .!; �/; (4.3.4)

where I� is the specific intensity (power per unit solid angle per unit frequency
per unit area) in the mode, and where ` denotes distance along the ray path.
The coefficient J�.!; �/ is the volume emissivity, and both it and the absorption
coefficient (4.1.21) can be expressed in terms of the emissivity. In ordinary units the
volume emissivity becomes

J�.!; �/ D
X
a

J� .a; !; �/;

J� .a; !; �/ D 2


Z 1

0

d jpj jpj2
Z 1

�1
d cos˛ ��.a; !; �/

f .jpj; cos˛/

.2
„/3 ; (4.3.5)
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and absorption coefficient becomes

��.!; �/ D
X
a

�� .a; !; �/;

�� .a; !; �/ D �2

Z 1
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d jpj jpj2
Z 1

�1
d cos˛
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c/3�� .a; !; �/
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@jpj C cos˛ � n�v cos �

jpj sin˛
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@˛



f .jpj; cos˛/

.2
„/3 : (4.3.6)

The factor .2
„/3 is included in (4.3.5) and (4.3.6) to be consistent with the
normalization used in quantum statistical mechanics, where the integral over the
6-dimensional phase space involves d3xd3p=.2
„/3. (For electrons f .p/ is equal
to 2n.p/, where n.p/ is the electron occupation number and the factor 2 is from the
sum over spin states.) The factor .2
„/3 is omitted in classical statistical mechanics,
where the integral over phase space involves d3xd3p.

4.3.2 Gyromagnetic Emission by Thermal Particles

In the strictly nonrelativistic limit, cyclotron emission by nonthermal electrons
occurs at lines centered on the cyclotron frequency and its harmonics, with the
intensity of the lines decreasingly rapidly with increasing harmonic number a. These
lines have a finite width as a result of Doppler broadening due to the random thermal
motions of the electrons along B.

A thermal distribution function of particles in the strictly nonrelativistic limit
(� D 1, p D mv) is the Maxwellian distribution (ordinary units with � D mc2=T ,
and T the temperature in energy units)

f .p/

.2
„/3 D n�3=2

.2
/3=2.mc/3
e��v2=2c2 ; (4.3.7)

where the factor .2
„/3 is included for the same reason as in (4.3.5) and (4.3.6).
For a thermal distribution the volume emissivity and the absorption coefficient
are proportional to each other (Kirchhoff’s law), with the specific relation being
(ordinary units)

��.!; �/ D .2
/3�c

m!2n2�@.!n� /=@!
J� .!; �/: (4.3.8)

In the following the volume emissivity at the ath harmonic, J�.a; !; �/, is calcu-
lated, and the absorption coefficient follows from (4.3.8).

The integrals in (4.3.5) over velocity space for the distribution (4.3.7) sep-
arates in cylindrical coordinates. This follows by writing (4.3.7) in the form
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exp.��v2=2/ D exp.��v2?=2/ exp.��v2z =2/ and performing the v?-integral over
the ordinary Bessel functions using

Z 1

0

dv?v? e� 1
2 �v

2
?

2
4

J 2a .z/
zJa.z/J 0

a.z/
z2J 02

a .z/

3
5De��

2
4

Ia.�/

�ŒI 0
s .�/� Ia.�/�

a2Ia.�/�2�2ŒI 0
a.�/�Ia.�/�

3
5 ; (4.3.9)

with z D k?v?=˝0 and where the argument of the modified Bessel functions, Ia,
is �� D .!n� sin �V=˝0/

2, with V D 1=�1=2 the thermal speed. The resulting
expression for the emission coefficient is

J� .a; !; �/ D
�
2





1=2 !2pm
!c

n�A�.a; !; �/

�1=2j cos � j e��.!�a˝0/2=2!2n2� cos2 �; (4.3.10)
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Ia � 2�MI 0
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� �
: (4.3.11)

The general form (4.3.11) is unnecessarily cumbersome for most purposes and
approximations need to be made.

One simplifying assumption is the small gyroradius limit, ���1. This corre-
sponds to the argument of the modified Bessel functions being small, when only the
leading terms in the power series expansion of the modified Bessel functions are
retained. In the small-gyroradius limit, (4.3.11) reduces to

A�.a; !; �/ 
 . 1
2
�� /

a�1

2aŠ.1C T 2� /

�
!

˝e

.L� cos � � T� sin �/ tan � C aT� sec � C a�

�2
:

(4.3.12)

Further simplification occurs when (1) the longitudinal component can be neglected
(L� ! 0), and (2) by setting ! D a˝0, in which case the quantity in square
brackets reduces to a.T� cos � � �/, with � D 1 for electrons.

The exponential function in (4.3.10) determines the line profile. The line
emission at the ath harmonic is centered on ! D a˝0 and it is Doppler broadened
with a characteristic width

.�!/a D n� j cos � j
�1=2

a˝0: (4.3.13)
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The Doppler broadening is due to the component of the random thermal motions
along the magnetic field lines. In the strictly nonrelativistic limit the perpendicular
motions do not contribute to the line width, whereas relativistic effects imply a
nonzero broadening due to the so-called transverse Doppler effect.

4.3.3 Semirelativistic Approximation

The strictly nonrelativistic limit breaks down near perpendicular propagation even
for v � 1. This may be seen by noting that in the nonrelativistic approximation,
� D 1, the resonance condition (4.1.11) reduces to a vertical line in velocity space,
and for perpendicular propagation the resonance condition reduces to a semicircle
centered on the origin, cf. Fig. 4.1.

The simplest useful approximation to the resonance condition that allows one to
treat perpendicular propagation is the semirelativistic approximation � D 1C 1

2
v2.

This leads to the Doppler condition being approximated by

!.1 � n�vz cos �/� a˝e

�
1 � 1

2
v2? � 1

2
v2z
� D 0: (4.3.14)

It follows from (4.3.14) that in the semirelativistic approximation, a resonance
ellipse is approximated by a circle with its center at vz D vc, v? D 0, and radius v0,
given by

vc D n� cos �; v20 D n2� cos2 � C 2.a˝e � !/=a˝e: (4.3.15)

Relativistic Frequency Downshift and Line Broadening

Two intrinsically relativistic effects on cyclotron emission are (1) a frequency
downshift and (2) a line broadening due to the transverse Doppler effect. Both of
these are treated here assuming perpendicular propagation.

The line width may be characterized by the spread in frequency around the
mean frequency. This involves moments of the frequency distribution, with theN th
moment defined by

h!N .a; �/i� D
Z 1

0

d! !N�1 J� .a; !; �/
�Z 1

0

d! !�1 J� .a; !; �/: (4.3.16)

The mean frequency is given by the moment N D 1, and it determines the line
center. The second moment, N D 2, determines the variance in the frequency: the
bandwidth may be characterized by the square root of the variance,�! D .h!2i �
h!i2/1=2. The moments (4.3.16) may be evaluated approximately for emission at
� D 
=2 using the method of steepest descent.
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The method of steepest descent applies to an integral of the form

I D
Z
dy G.y/ expŒ�F.y/�; (4.3.17)

where G.y/ is slowly varying and expŒ�F.y/� is sharply peaked about some value
y D y0. The range of integration is assumed to cover the important contribution
from this peak. The value of y0 is determined by the solution of F 0.y0/ D 0, where
the prime denotes differentiation. The integral is approximated by

I D
�

2


F 00.y0/


1=2
G.y0/ expŒ�F.y0/�: (4.3.18)

The specific integrals of interest here are written as integrals over ˛2 D 2.a˝e �
!/=a˝e , implyingF.˛2/ D �˛2=2�a ln.˛2/ for the x mode and F.˛2/ D �˛2=2�
.aC 1/ ln.a2/ for the o mode. One finds
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=2/i D a˝e
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�

3
75 ; (4.3.19)

for these two modes, respectively. The frequency downshift of the center of the
cyclotron line, by fraction 
a=�, may be attributed to the relativistic decrease in the
gyrofrequency,˝e=� .

There is a relativistic broadening, described by

Œ�!.a; 
=2/�2 D .a˝e/
2
a C 1˙ 1

2
�2

; (4.3.20)

that may be attributed to the transverse Doppler effect. The total line broadening for
� ¤ 
=2 is

Œ�!.a; �/�2 D .a˝e/
2

2
64cos2 �

�
C
a C 3

2
˙ 1

2
�2

3
75 : (4.3.21)

In a nonrelativistic plasma, � 	 1, the relativistic broadening is significant only for
angles j� � 
=2j�<a1=2=�.
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v sin α

v cos α v cos α

α = αc

v sin αa b

Fig. 4.2 (a) A nonthermal loss-cone distribution, with loss cone angle ˛0, is assumed to be
confined to the lightly shaded region, with the lower-energy thermal distribution filling the darkly
shaded region. The dotted semicircle indicates a resonance ellipse that samples only regions where
@f=@p? is positive. (b) A shell distribution with a resonance ellipse inside the shell in the region
where f is an increasing function of v

4.3.4 Electron Cyclotron Maser Emission

Electron cyclotron absorption can be negative under relatively mild conditions in a
nonrelativistic plasma. This results in electron cyclotron maser emission (ECME)
near the fundamental or low harmonics of the cyclotron frequency. An important
type of ECME is due to the intrinsically relativistic effect [6, 12, 14] and this is
treated using the semirelativistic approximation (4.3.14).

Consider the absorption coefficient (4.1.21) in the semirelativistic approxima-
tion. The integral over momentum space in (4.1.21) reduces to an integral around
the resonance ellipse. The sign of the absorption coefficient is determined by a
weighted average of the value of � ODf around the resonance ellipse, with OD given
by (4.1.21). Specifically, one has

� ODf.p?; pz/ D �
�
a˝e

v?
@

@p?
C kz

@

@pz



f .p?; pz/: (4.3.22)

For jkzj � ! the contribution from the pz-derivative is small compared with the
contribution from the p?-derivative in (4.3.22). It follows that if the resonance
ellipse for a wave with given kz, !, a is such that @f=@p? is positive everywhere
around the ellipse, then the absorption coefficient is necessarily negative. Two
examples of such an ellipse are illustrated schematically in Fig. 4.2, (a) for a loss-
cone distribution, that is, a distribution in which the number of particles decreases
inside a loss cone ˛ < ˛c, and (b) for a shell distribution, where the particles are
confined to a shell in velocity space. The resonance ellipse in Fig. 4.2a is chosen not
to intersect the region where the thermal electrons are located; waves corresponding
to resonance ellipses that intersect this region suffer strong thermal gyromagnetic
absorption. The resonance ellipse in Fig. 4.2b is for perpendicular propagation; in
a magnetoionic medium such waves are below the cutoff frequency for the x mode
and so cannot escape. ECME due to a shell distribution leads to escaping radiation
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effectively only in the absence of thermal plasma, and this proviso seems to be
satisfied in two important applications of ECME: to the Earth’s auroral kilometric
radiation (AKR) and to Jupiter’s decametric radio emission (DAM) [3].

This form of ECME depends intrinsically on a relativistic effect, as is evident
from the fact that the resonance ellipse is approximated by a circle rather than a
vertical straight line. The following quantum mechanical argument also emphasizes
the essentially relativistic nature of this form of ECME. Maser emission is under-
stood in terms of a quantum state of higher energy being overpopulated relative
to a state of lower energy. The perpendicular energy is quantized with the Landau
quantum number n introduced in (4.1.10). Let the occupation number be N.n/.
Stimulated emission n ! n � a is proportional to N.n/ and true absorption
n � a ! n is proportional to N.n � a/, so that the net absorption is proportion to
N.n/�N.n�a/. (In the classical limit one hasN.n/�N.n�a/ D a@N.n/=@nwith
@=@n ! .˝0=v?/@=@p?.) This suggests that for N.n/ > N.n � a/ the absorption
is negative. This conclusion is correct in a relativistically correct treatment, but not
in a strictly nonrelativistic theory. This follows from the nonrelativistic counterpart
of (4.1.10), "n D mCp2z =2mC n˝0, which implies that the harmonics are equally
spaced in the strictly nonrelativistic case. The emission at ! D a˝0 comes from all
transitions n ! n � a, that is, from all values of n. Hence, one needs to sum over
n, to include the effect of transitions n $ n � a for all n. This sum gives

1X
nDa

N.n/�N.n � a/ D N.1/�N.0/: (4.3.23)

One necessarily hasN.1/ D 0 andN.0/ � 0, so that the absorption is nonnegative
and there can be no maser action.

When the correct relativistic formula (4.1.10) for the energy "n is used, it
implies that each transition n $ n � a occurs at a slightly different frequency,
which is referred to an anharmonicity. Hence maser action between two specific
quantum states can be considered in isolation from transitions for all other n. Then
N.n/ > N.n�a/ suffices for the absorption to be negative for the relevant frequency
of transition. Thus, quantum mechanically, this form of ECME is attributed to the
anharmonicity in cyclotron transitions implied by the relativistically correct form of
the energy (4.1.10).

4.4 Synchrotron Emission

Synchrotron emission is gyromagnetic emission by highly relativistic particles. In
this section synchrotron emission and absorption are treated as the highly relativistic
limit of the treatment of gyromagnetic emission and absorption. The case of a
power-law energy distribution of particles is of most interest in practice. The case
of a relativistic thermal distribution is also discussed. Ordinary units are used in this
section.
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4.4.1 Synchrotron Emissivity

The emissivity in the synchrotron case is given by making the Airy-integral
approximation to the Bessel functions. In this limit the harmonic number, a, is
large and is regarded as a continuous variable, a D �! sin2 �=˝0. The resulting
expression for the average emissivity for synchrotron emission is

N�˛ˇ.!; �; �/ D
p
3q2˝0� sin �	.�/

64
3"0�c
F ˛ˇ.!; �; �/; (4.4.1)

with � a modified Lorentz factor. In (4.4.1), ˛; ˇ are the two transverse components,
which can be denoted as t; a or k;?, repectively, where k;? refer to directions in
the transverse plane relative to the projection of B onto the plane. The components
of F ˛ˇ are
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2 sin �; � D .1 � n2v2=c2/�1=2; (4.4.2)

with F at D �F ta, and with t D .cos �; 0;� sin �/, a D .0; 1; 0/. The refractive
index, n, is assumed very close to unity, but n ¤ 1 needs to be retained to include
the Razin effect; the modified Lorentz factor, � reduces to � for n ! 1.

The functional dependence on the parameter R in the total emissivity (summed
over the two states of polarization) is described by a function F.R/,

F.R/ D 1

2
ŒF t t .R/C F aa.R/� D R

Z 1
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dt K5=3.t/: (4.4.3)

Limiting cases for F.R/ are
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Fig. 4.3 The function F.R/
defined by (4.4.3)

In between these limiting cases, there is a maximum at F.0:29/ D 0:92. The
function F.R/ is plotted in Fig. 4.3. A simple analytic approximation to it is
F.R/ 
 1:8R0:3e�R.

Power-Law Distribution

For highly relativistic particles one has � 	 1, with " D �mc2, jpj D �mc. An
isotropic distribution of particles can be described by the energy spectrum, N.�/,
written in terms of the Lorentz factor, � . The number density of particles is given by

Z
d3p

.2
„/3 f .p/ D
Z
d� N.�/; (4.4.5)

which relates the two notations. For an anisotropic distribution, a pitch-angle
dependence, 	.˛/, is introduced, and the relation between the notations becomes

f .p/

.2
„/3 D N.�/	.˛/

2
.mc/3�2
: (4.4.6)

A power-law energy spectrum for highly relativistic particles is of the form (2.7.28),
viz. N.�/ D K��a for �1 � � � �2. The energy-integrals in the expression (2.7.1)
with (4.4.1) for the synchrotron emission coefficient may be evaluated in closed
form for �1 D 0, �2 D 1 using the standard integral

Z 1

0

dx x�K�.ax/ D 2��1a���1 �
�
1C �C �

2



�

�
1C � � �

2



; (4.4.7)

and identities satisfied by the � -function:

� .1C x/ D x� .x/; � .1� x/� .x/ D 


sin.
x/
: (4.4.8)
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One obtains

J ˛ˇ.!; �/ D A.�/ j ˛ˇ.a/

�
2!

3˝0 sin �


�.a�1/=2
; (4.4.9)

with

A.�/ D K

p
3q2˝0 sin �	.�/

64
3"0c
;

j t t .a/ D 2=3

a C 1
2.a�3/=2 �

�
3aC 7

12



�

�
3a � 1

12



; j aa.a/D a C 5=3

2=3
j t t .a/;

j ta.a/ D �2i� cot �

�
2!

3˝0 sin �


�1=2 2.a�2/=2�aC 2C g.�/
�

3a

��
�
3aC 8

12



�

�
3aC 4

12



; (4.4.10)

with j at .a/ D �j ta.a/. The fact that the frequency dependence of the ta-term
differs from the t t- and aa-terms by a factor 
 .!=˝0 sin �/�1=2 may be understood
by noting that this factor results from the first order term in an expansion in 1=� with
! 
 ˝0�

2 sin � .

4.4.2 Synchrotron Absorption

The relation between the synchrotron absorption coefficient and the synchrotron
emissivity is of the same form as the relation (4.3.6) for an arbitrary wave mode � .
Rewriting (4.3.6) as a polarization tensor gives an absorption coefficient, �˛ˇ.!; �/,
which can be written as the absorption coefficient per unit length, �˛ˇ.!; �/ D
�˛ˇ.!; �/=c. There are contributions from derivatives of the distribution function
with respect to jpj ! �mc and ˛, with the latter contributing only for an anisotropic
distribution.

For an isotropic distribution the synchrotron absorption coefficient, in the form
of a polarization tensor, is

�˛ˇ.!; �/ D � .2
/
4	.�/

!2m

Z
d� N.�/ �˛ˇ.!; �; �/

d lnŒN.�/=�2�

d�
; (4.4.11)

with the synchrotron emissivity, N�˛ˇ.!; �; �/, given by (4.4.1). Thus, (4.4.11)
becomes

�˛ˇ.!; �/ D � .2
/
4

!2mc

Z
d� �2

p
3q2˝0� sin �	.�/

64
3"0�
F ˛ˇ.!; �; �/

d ŒN.�/=�2�

d�
;

(4.4.12)
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with F ˛ˇ.!; �; �/ given by (4.4.2). For an anisotropic distribution, the derivative
with respect to ˛ gives the derivative of the pitch angle distribution at ˛ D � ,
	0.�/ D d	.�/=d� . For the t t and aa components, the anisotropy gives a correction
of order 1=� , which can be neglected. For the ta-component it is of the same order
in 1=� as the ta-terms in (4.4.12), and it needs to be retained. This additional
contribution is

�ta˛ .!; �/ D 2i�.2
/4c	0.�/
3!2mc

Z
d�N.�/

�

p
3q2˝0 sin �	.�/

64
3"0c

Z 1

R
dt K1=3.t/; (4.4.13)

with R D !=!c, with !c given by (4.4.2).
The absorption coefficient may be evaluated explicitly for the power-law distri-

bution (2.7.28), giving

�˛ˇ.!; �/ D .2
/3

!2
K

p
3q2˝0 sin �	.�/

64
3"0c
j
˛ˇ
ab .a/

�
2!

3˝0 sin �


�a=2
; (4.4.14)

with j ˛ˇab .a/ D .aC2/j ˛ˇ.aC1/ for the t t- and aa-components and with j 12ab .a/ D
.aC 3/

�
a C 2C g.�/

�
j 12.aC 1/=

�
a C 3C g.�/

�
.

In the case of strong Faraday rotation, as discussed below, the absorption
coefficients for the two natural modes are relevant, and these may be constructed
from the components of �˛ˇ . Let the two modes be labeled ˙ with polarization
vectors e˙ D .T˙t C ia/=.T 2˙ C 1/1=2 with TCT� D �1. The absorption
coefficients, �˙ for the two modes are related to �˛ˇ by

�˙.!; �/ D T 2˙�tt .!; �/C 2iT˙�ta.!; �/C �aa.!; �/

T 2˙ C 1
: (4.4.15)

In the approximation in which the natural modes are the magnetoionic modes in the
circularly polarized limit, one has T˙ D �� cos �=j� cos � j, with the C-mode being
the o mode for an electron gas, � D 1.

Polarization-Dependent Absorption

Synchrotron emission and absorption are both polarization dependent, and include
an unpolarized part and linearly and circularly polarized parts. A convenient way
of treating polarized emission is in terms of the Stokes parameters, I;Q;U; V ,
cf. � 3.6, with the polarization described by the three parameters q D Q=I; u D
U=I; v D V=I . Absorption can be described by four absorption coefficients,
�I ; �Q;�U ; �V , with �I describing polarization-independent absorption, and with
the other three parameters describing the polarization-dependence of the absorption.
Polarization-dependent absorption is included in the transfer equation (3.6.9) for the
Stokes vector, which is generalized here to

dSA=d` D JA C �ABSB � �ABSB; (4.4.16)
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with A;B D I;Q;U; V , and with the sum over B implied; JA is a column
matrix that describes spontaneous emission and �AB and �AB are square matrices
written down in (3.6.10). The emission coefficients, JA, and absorption coefficients,
�AB , may be constructed by writing the synchrotron emissivity and the absorption
coefficient as polarization tensors, and translating into the notation used in (4.4.16).
The translation from the form involving polarization tensors to the form (4.4.16)
involving the Stokes parameters follows by using the Pauli matrices (3.6.13). In
the synchrotron case, the two transverse polarizations are chosen perpendicular and
parallel to the projection of the magnetic field onto the transverse plane, and the
components JU and �U are then zero.

There is a qualitative difference between two limiting cases depending on which
of the terms �ABSB and �ABSB in (4.4.16) is the more dominant. These terms
describe generalized Faraday rotation and synchrotron absorption, respectively.
The two limiting cases lead to different expressions for the polarization of a self-
absorbed synchrotron source.

If generalized Faraday rotation dominates, then to a first approximation the
absorption may be neglected. The components in the two natural modes of the
plasma then propagate independently of each other, and each is described by its
own absorption coefficient. For the magnetoionic o and x modes, and the transfer
equations are

dIo;x

d`
D Jo;x � �o;xIo;x: (4.4.17)

In the self-absorbed limit, emission and absorption are in balance, and (4.4.17)
implies that the specific intensities in the two modes are Io;x D Jo;x=�o;x.

In the opposite limiting case, when generalized Faraday rotation is negligible
compared with absorption, the transfer equation may be approximated by (4.4.16)
with the term involving �AB omitted. In this case, in the self-absorbed limit, the
solution of the transfer equation (4.4.16) is

SA D ��1
ABJB; (4.4.18)

where ��1
AB is the inverse of �AB D �AB=c. The general result is relatively

cumbersome. It simplifies if one chooses coordinate axes such that JU D 0,
�U D 0, and if one assumes that JV and �V are of order 1=� compared with JI ; JQ
and �I ; �Q, respectively, and ignores terms of order 1=�2. In the more general
case, where both synchrotron absorption and Faraday rotation are included, (4.4.18)
is replaced by SA D Œ� � ���1ABJB , where Œ� � ���1AB is the inverse of �AB � �AB .
In practice, the direction of the magnetic field varies through the source, and one
needs to take this into account in integrating (4.4.16) along the line of sight through
the source.
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4.4.3 Synchrotron Absorption: Thermal

Synchrotron absorption by a (highly relativistic) thermal distribution of particles
may be treated both directly and using the antihermitian part of Trubnikov’s
response tensor.

The volume emissivity and the absorption coefficient for a thermal distribution
are related by Kirchhoff’s law (2.7.19), and only one of them need be calculated.
The absorption coefficient is

�˛ˇ.!; �/ D .2
/3n�2

!2K2.�/

Z 1

1

d� �.�2 � 12/1=2 e��� N�˛ˇ.!; �; �/; (4.4.19)

where the thermal distribution (2.4.1) is assumed, and where the synchrotron
emissivity, N�˛ˇ , is given by (4.4.2). The highly relativistic limit corresponds to
� � 1 and one may assume � 	 1 in the integrand in (4.4.19) with the lower
limit of the integration approximated by zero. For simplicity, only the two linearly
polarized components for � D 
=2 are considered here, and the refractive index is
assumed to be unity.

On inserting the expression (4.4.2) for the emissivity, and noting R / 1=�2, one
may partially integrate and introduce the variable x D 1=�2�2 to write

Z
d��2 e��� R

�Z 1

R

dt K5=3.t/˙K2=3.R/

�

D
Z 1

0

dx e�1=px
�
K5=3.�x/˙K 0

2=3.�x/
�
; (4.4.20)

with � D 2!�2=3˝0. The resulting integral simplifies in two limits:

K5=3.�x/˙K 0
2=3.�x/ D

8̂
<̂
ˆ̂:

� .5=3/

21=3.�x/5=3
.1; 3/ for � � 1;

�
2


�x


1=2
e��x

3�x
.1; 3�x/ for � 	 1;

(4.4.21)

where the recursion relation (A.1.12) are used. The remaining integral is then
performed using the method of steepest descents.

The limit � � 1 in (4.4.21) corresponds to frequencies below the characteristic
frequency ! 
 ˝0=�

2 of emission by a thermal particle with � 
 1=�. In this
limit (4.4.19) reduces to

�t t;aa.!; 
=2/ D 3
!2p

4˝0

�
4P 5

��1=3
�
1; 3

�
; (4.4.22)

with P D 9!=2�˝0. In the high frequency limit � 	 1, (4.4.22) is replaced by
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�t t;aa.!; 
=2/ D 3
!2p�
2

4
p
2˝0

e��P1=3

�P 4=3

�
1; �P 1=3

�
: (4.4.23)

In (4.4.22) and (4.4.23) the factor K2.�/ in the normalization of the Jüttner
distribution is approximated by 2=�2, which applies for � � 1.

Synchrotron Absorption: Trubnikov’s Form

The foregoing results may be derived in a different manner by starting from the
antihermitian part of Trubnikov’s response tensor, given by (2.4.15). Besides using
this to treat gyromagnetic absorption in the synchrotron limit, Trubnikov also
applied it to the nonrelativistic and mildly relativistic cases.

Starting from (2.4.15), one has

�t t .!; �/C �aa.!; �/ D
p

!2p�

5=2

˝0.r0r
00
0 /
1=2
e��p
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sin �.1� cos˝0�0/

�2
� �2 cot2 �;

r 00
0 D �2 !

2

˝2
0

sin2 �.1 � cos˝0�0/: (4.4.24)

For !=�˝0 	 1, r 0
0 D 0 has the approximate solution

˝0�0 D i
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1=3 "
1 � 3
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sin �
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2=3
C � � �

#
; (4.4.25)

with P D 9!=2�˝0. On substituting (4.4.25) into (4.4.24), and separating into the
two modes for � D 
=2, one finds
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˝0

3
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e��

�
P1=3�1C9=20P1=3
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�P 1=3
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; (4.4.26)

which is the result derived by Trubnikov [11].
The synchrotron case is the highly relativistic limit � � 1, when the asymptotic

approximation is made to the Macdonald functions in (2.4.15):

K2

�
r.�/
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 2

r2.�/
� 1

2
C � � � ; K3

�
r.�/

� 
 8

r3.�/
� 1

r.�/
C � � � : (4.4.27)

The resulting approximation to the synchrotron absorption coefficient for a thermal
distribution is
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with � D 
=2 assumed here. Trubnikov [11] evaluated the integrals in terms
of the residue at the pole r.�/ D 0, which for �2 � 1 occurs at �1 D
2i.3�=˝0! sin2 �/1=3. The specific integrals are

Z 1
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d�

 
1=r4.�/

�4=r6.�/
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D
 
.3
=2�4˝0/
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�1=3
.35
=4�6˝5

0 /.2
3 sin4 � P 11/1=3

!
; (4.4.29)

with P D .9!=2�˝0/ sin2 � . Thus, (4.4.28) with (4.4.29) reproduces (4.4.22) for
� D 
=2 and K2.�/ D 2=�2.

4.4.4 Razin Suppression

The presence of a cold plasma causes a suppression of synchrotron emission,
referred to as the Razin effect [8]. In the context of synchrotron radiation, the
suppression effect may be seen by noting that (4.4.4) implies that synchrotron
radiation falls off exponentially for R�>1 with R D !=!c, !c D .3=2/˝0�

2 sin �
and with

� D .1 � n2v2=c2/�1=2 
 �

 
1C �2!2p

!2

!�1=2
: (4.4.30)

The medium is unimportant for ! 	 �!p, when one has !c D .3=2/˝0�
2 sin �

and R / !, implying that synchrotron emission falls off exponentially at high
frequency. However, for !�<�!p one has � 
 !=!p and R / 1=!, so that the
emission also falls off exponentially at low frequency. The characteristic frequency
below which this suppression effect occurs is determined by setting ! D �!p D !c,
and is called the Razin-Tsytovich frequency,

!RT D 2!2p=3˝e sin �: (4.4.31)

More generally, any form of emission by a highly relativistic particle in a plasma is
suppressed at !�< �!p .

The Razin effect also applies to emission by mildly relativistic particles. Consider
gyromagnetic emission at the ath harmonic in a medium with refractive index n. The
emission coefficient depends on n through a multiplicative factor of n2a�1, which
corresponds to 22a-multipole emission. For large a, and for n D .1 � !2p=!

2/1=2

with !2 	 !2p , one has
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.1 � !2p=!
2/a�1=2 
 e�a!2p=!2 ; (4.4.32)

which implies suppression for a!2p=!
2 �>1. With ! 
 a˝e for cyclotron emission

at the ath harmonic, this also implies suppression for !�<!2p=˝e.

Maser Synchrotron Emission

Synchrotron absorption cannot be negative under realistic conditions. To see this,
consider the absorption coefficient in the form

�˛ˇ.!; �/ D � .2
/
4	.�/

!2m

Z
d� �2 N�˛ˇ.!; �; �/ d

d�

N.�/
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D .2
/4	.�/

!2m

Z
d�

N.�/

�2
d

d�

�
�2 N�˛ˇ.!; �; �/�; (4.4.33)

where the second form follows from the first by a partial integration. Ignoring the
circular polarization, absorption can be negative only if at least one of the two
eigenvalues, 1

2
.� t t ˙ �aa/, of �˛ˇ is negative. When the Razin effect is ignored,

� ! � , it is straightforward to carry out the derivative in the second form of (4.4.33),
using (4.4.1) with (4.4.2), and one finds that the eigenvalues cannot be negative [13].

This proof breaks down when the Razin effect is important, and it is then possible
in principle for absorption to be negative for !�<�!p [5, 15]. One also requires
dŒN.�/=�2�=d� > 0. There is no known case where this effect occurs. It seems
implausible that both the necessary conditions for it to occur could be satisfied
simultaneously.

4.5 Thomson Scattering in a Magnetic Field

Inclusion of the magnetic field in the theory of scattering of waves by particles
affects both the waves and the particles. The waves are the natural modes of
the magnetized plasma, and waves in one mode may be scattered into waves in
the same mode or in another mode. The spiraling motion of a scattering particle
needs to be taken into account, and this has two notable effects: it introduces an
additional length, the gyroradius of the scattering particle, and it allows transitions
at frequencies that differ by a harmonic of the cyclotron frequency. Two limiting
cases are for magnetized particles, when the gyroradius is smaller than other relevant
lengths, and unmagnetized particles, when the gyroradius is larger than other
relevant lengths. Scattering by unmagnetized particles may be approximated by
ignoring the spiraling motion and treating the unperturbed motion of the scattering
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particles as rectilinear. For strongly magnetized scattering particles, a simplifying
approximation is to assume that the gyroradius is zero.

4.5.1 Probability for Thomson Scattering

Scattering of waves may be treated as emission of the scattered waves, due to a
current that is of first order in the amplitude of the unscattered waves. The theory for
an unmagnetized particle is presented in � 5.5 of volume 1, and the generalization to
a magnetized particle involves identifying the current with the first order current for
a magnetized particle. Thomson scattering by highly relativistic particles is called
inverse Compton scattering in the astrophysical literature.

Current Associated with Thomson Scattering

The current associated with Thomson scattering by a charged particle in a magnetic
field, denoted J .1/�sp .k/, is calculated in � 2.2 and is given by (2.2.14). There is
an additional current that needs to be included, associated with the screening of
the scattering particle in the plasma. This is referred to as nonlinear scattering.
The total current, in the calculation of the scattering probability, is the sum of the
contributions from Thomson scattering and nonlinear scattering.

Nonlinear Scattering

In simple cases, nonlinear scattering can be interpreted as scattering due to a quasi-
particle associated with the (Debye) screening field of the scattering charge. For an
electron scattering long-wavelength waves, the quasi-particle looks like a positively
charged electron co-moving with the scattering electron, and the two currents
interfere strongly, leaving the dominant scattering due to the electron-like quasi-
particle associated with a scattering ion. At short wavelengths nonlinear scattering
is unimportant, and the scattering can be approximated by Thomson scattering by
unscreened electrons.

The current associated with nonlinear scattering is due to the quadratic response
of the plasma to the field of the unscattered wave and the self-consistent field of the
scattering particle. This current is

J .nl/�.k/ D 2

Z
d�.2/ ˘.2/�

��.�k; k1; k2/A.q/�.k1/A�M 0.k2/: (4.5.1)

The field A.q/�.k/ is found by solving the inhomogeneous wave equation with the
unperturbed current due to the motion of the charge q as the source term. This gives
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A.q/�.k/ D �q eikx0
1X

aD�1
eia� D��.k/ U �.a; k/ 2
ı

�
.ku/k � a˝0

�
; (4.5.2)

where (2.1.31) is used. The scattering current is the sum of (2.2.14) and (4.5.2). The
calculation of the probability for scattering then proceeds as in the unmagnetized
case.

Scattering Probability

The resulting expression for the scattering probability is

wMP .a; p; k; k
0/ D q4

"20m
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!M .k/!P .k0/
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�
; (4.5.3)

where M;P label the unscattered and scattered wave modes, whose dispersion
relations are implicit in k� D k

�
M , k0� D k

0�
P , with

QaMP .a; k; k0; p/ D e�
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˘���.k; k0; k � k0/U�.a; k � k0/

�
; (4.5.4)

and with G��.a; k; u/ given by (2.2.15), ���.!/ given by (2.1.15) and U�.a; k; u/
by (2.1.28) with (2.1.29). The term involving˘��� is due to nonlinear scattering.

The resonance condition in (4.5.4) may be interpreted either from a purely
classical viewpoint or from a semi-classical viewpoint. The classical interpretation
is that the difference between the frequencies of the scattered and unscattered waves
in the rest frame of the gyrocenter of the scattering particle is an integral multiple
of the gyrofrequency. The semi-classical interpretation is in terms of conservation
of energy and momentum, and follows from (4.1.10)–(4.1.13) by replacing the
emission of a wave quantum, k�, by emission of the beat disturbance, k � k0.

The scattering probability (4.5.3) is symmetric under the interchange of the
roles of the scattered and unscattered waves, M $ P (and a $ �a). It also
describes double emission, that is, simultaneous emission of waves with wave 4-
vectors k, �k0.
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4.5.2 Quasilinear Equations for Scattering

Quasilinear equations for scattering by a magnetized particle may be derived using
semi-classical theory, in a way that is closely analogous to the unmagnetized case
discussed in volume 1. These equations include the kinetic equations for both the
scattered and unscattered waves:
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The kinetic equation for the particles due to wave-particle scattering is described by
the quasilinear equation with the coefficients (4.1.25) and (4.1.26) replaced by
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for the terms that describe the effect of spontaneous emission alone, and
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(4.5.8)

for the diffusion coefficients, with wMP .a/ denoting wMP .a; k; k0; p/.
The quasilinear equations conserve the energy, the parallel momentum and the

number of photons in a system consisting of waves in the modesM and P and the
scattering particles.

Magnetized and Unmagnetized Particles

The general form of the probability (4.5.3) with (4.5.4) is too cumbersome to be of
practical use and one needs to make various simplifying assumptions to reduce it to
a directly useful form. One complicating feature is the sum over Bessel functions.
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This may be simplified in two limiting cases, referred to as magnetized and
unmagnetized particles, respectively. For unmagnetized particles, the gyroradius of
the scattering particle is effectively assumed infinite, in which case the motion of
the particle is approximated by constant rectilinear motion, and Thomson scattering
in a magnetic field is replaced by its unmagnetized counterpart. Formally, this limit
corresponds to large argument of the Bessel functions, .k � k0/?R 	 1, when
the sum is dominated by high harmonics, of the same order as this argument,
a 
 .k � k0/?R.

For magnetized particles the small gyroradius approximation is made, .k �
k0/?R � 1, such that only the leading terms in the power series expansion
of the Bessel functions need be retained. The first order current is approximated
by (2.2.19). The corresponding approximation to the probability (4.5.3) is

wMP .p; k; k
0/D q4

"20m
2�

RM .k/RP .k
0/

!M .k/!P .k0/
j QaMP .k; k0; p/j22
ı�.kM�k0

P /uk
�
; (4.5.9)

where the nonlinear scattering term is neglected, and with

QaMP .k; k0; p/ D e�
M�.k/eP�.k

0/G˛�.kM ; uk/�˛ˇ.kMuk/Gˇ�.k0
P ; uk/: (4.5.10)

The right hand side of (4.5.10) may be rewritten using (2.2.20).

Scattering by Nonrelativistic Particles

Simplification occurs when the scattering particle is nonrelativistic. Provided that
the refractive index of neither wave is large, one has kMuk 
 !M.k/, k0

P uk 

!P .k

0/, so that the ı-function in (4.5.9) implies that the change in frequency
is small. For nonrelativistic particles, the form (4.5.10) with (2.2.20) may be
approximated by

QaMP .k; k0; p/ D e�
M�.k/eP�.k

0/���.kMuk/; (4.5.11)

with kMuk D k0
P uk. Further simplifications involve approximations to the wave

properties. Specific cases discussed here are the scattering of magnetoionic waves by
nonrelativistic electrons, and the scattering of the perpendicular and parallel modes
of the birefringent vacuum in strongly magnetized, low density plasmas.

4.5.3 Scattering Cross Section

In describing Thomson scattering, and inverse Compton scattering, it is conventional
to introduce the differential scattering cross section [1, 7]. Such a cross section is
written down here for scattering in a magnetized plasma.
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The differential scattering cross section relates the energy flux in the scattered
radiation, per unit solid angle about its ray direction, to the energy flux in the
incident radiation, per unit solid angle about its ray direction. The energy flux is
along the group velocity, which is at an angle, �r , to the magnetic field that is
different from the wave-normal angle, � , in general. One has

vgM .k/ D @!M .k/

@k
D .sin �r cos ; sin �r sin ; cos �r /vgM : (4.5.12)

For simplicity in writing, the argument of the group speed, vgM , and a label on
the ray angle, �r , denoting the mode, M , are omitted. For the mode P , the group
speed is written v0

gP , where the prime denotes that the argument depend on the
primed variables. The cross section depends on the Jacobian @ cos �r=@ cos � of the
transformation from the wave-normal to the ray angle. The differential scattering
cross section is identified as

˙MP D
X
a

Z 1

0

d! !2 n2M
.2
/3!0v0

gP

@.!nM /

@!

@ cos �

@ cos �r

@ cos � 0

@ cos � 0
r

wMP .a/; (4.5.13)

where arguments are omitted for simplicity in writing. The integral over ! is
performed over the ı-function in the probability (4.5.3). The cross section is too
cumbersome to be useful in most cases where the plasma dispersion is important.

A subtle point concerns the cancelation of two factors nM@.!nM /=@! in the
cross section, one from the group velocity, vgM , and one from the ratio of electric
to total energy, RM , in the probability wMP .a/. (A similar cancelation occurs
for n0

P @.!
0n0
P /=@!

0.) At sufficiently high frequencies, nM@.!nM /=@! approaches
unity, vgM approaches the speed of light and RM approaches one half. In the
opposite limit, near a resonance, nM@.!nM /=@! becomes very large, and vgM ,
RM become small. The cancelation of these two factors in the cross section may be
interpreted as the strength of the coupling becoming weak, due to small RM , being
offset by the energy flux in the waves becoming small, due to small vgM , allowing a
long time for the interaction. The cross section is rarely useful in such cases where
the plasma dispersion has a large effect.

4.5.4 Scattering of Magnetoionic Waves

In many applications, high frequency waves in magnetized plasmas are well
approximated by treating the plasma as a cold electron gas, so that the waves
are described by the magnetoinic theory � 3.3.1. For this case, it is convenient to
change the labeling of the modes M;P ! �; � 0. The wave properties in (4.3.1)
include the polarization parameters T� , L� , and the refractive index n� , and
are given by (3.3.3)–(3.3.4). On inserting the wave properties (4.3.1) into the
probability (4.5.9) with M;P ! �; � 0, to avoid loss of generality one needs to
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allow the two waves to be in different azimuthal planes, and this is achieved by
assuming the wave normal direction to be κ D .sin � cos ; sin � sin ; cos �/, so
that one has

t D .cos � cos ; cos � sin ;� sin �/; a D .� sin ; cos ; 0/; (4.5.14)

and similarly for κ0; t 0; a0 in terms of � 0;  0. The probability (4.5.9) depends on the
azimuthal angle, � 0, between the scattered and unscattered wave, and assuming
azimuthal symmetry in the particle and wave distributions, this dependence is of no
interest. Using the wave properties (4.3.1), assuming the scattering particle to be at
rest and averaging over azimuthal angles, the probability (4.5.9) reduces to [7]

hw�� 0.k;k0/i D q4

4"20m
2
f�� 0.!; �; � 0/ 2
ı.! � !0/; (4.5.15)

where the angular brackets denote the average over azimuthal angle. The depen-
dence on the wave properties is included in

f�� 0.!; �; � 0/ D
�
.1C T 2� / n�

@

@!
.!n� / .1C T 2� 0/ n� 0

@

@!
.!n� 0 /

��1

�



1C Y 2

2.1� Y 2/2 Œ.a�a� 0 C 1/2 C .a� C a� 0/2�

C 2Y

.1� Y 2/2
.a�a� 0 C 1/.a� C a� 0/C .b�b� 0/2

�
; (4.5.16)

with Y D ˝e=! and where the parameters describing the longitudinal and
transverse components of the polarization appear in

a� D L� sin � C T� cos �; b� D L� cos � � T� sin �; (4.5.17)

and similarly for the primed quantities.

Scattering of High-Frequency Waves

At sufficiently high frequencies, the magnetoionic waves become nearly circularly
polarized, except for a small range of angles about perpendicular propagation, with
refractive indices close to unity. A generalization that is important in very low
density plasmas with !p � ˝e is when the frequency is much greater than the
plasma frequency, !p , but not necessarily small in comparison with the cyclotron
frequency, ˝e . This limiting case is described by expanding in X � 1 in the
formulae in � 3.3.1 that describe the magnetoionic theory. This gives
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T� 
 �
1
2
Y sin2 � C �. 1

4
Y 2 sin4 � C cos2 �/1=2

cos �
; L� 
 0; n2� 
 1: (4.5.18)

Further simplification occurs for Y � 1, when one has T� D �� cos �=j cos � j,
corresponding to circular polarization. In this limit, (4.5.16) simplifies to

f�� 0.!; �; � 0/ 
 1
8
f.1Ccos2 �/.1Ccos2 � 0/C2 sin2 � sin2 � 0 C4�� 0j cos � cos � 0jg:

(4.5.19)

The sign �� 0 is equal to C1 if the scattered wave is in the same mode as the
unscattered wave, and equal to �1 if the mode changes. Scattering in which there is
no change in mode is preferred.

In the high-frequency limit, the scattering is equivalent to Thomson scattering in
the absence of a magnetic field. This may be seen by considering isotropic, unpo-
larized initial radiation, and averaging over the angular distribution of the scattered
radiation. The average over polarizations implies the term involving �� 0 in (4.5.18)
gives zero, and the averages over cos � and cos � 0 imply hf�� 0.!; �; � 0/i D 4=3.
The scattering cross section then reduces to the Thomson cross section.

4.5.5 Resonant Thomson Scattering

A specific case of interest in astrophysics is the scattering of waves with frequencies
of order the cyclotron frequency by nonrelativistic electrons in a plasma with !p �
˝e. The factor .1� Y 2/2 in the denominator in (4.5.16) suggests that the scattering
cross section diverges / 1=.1 � Y /2 / 1=.! � ˝e/

2 for ! ! ˝e. The enhanced
scattering when this factor becomes large is referred to as resonant scattering.

In a cold plasma, as the resonance is approached, the axial ratios, T� , for the
two modes approach TC D �1= cos � , T� D cos � , corresponding to the o and
x modes, respectively. One has ao D 0, ax D cos2 � . In this case, (4.5.16) implies
foo0 D fox0 D fxo0 D 0, and

fxx0.!; �; � 0/ 
 ˝2
e

8.! �˝e/2
.1C cos2 � cos2 � 0/2 C .cos2 � C cos2 � 0/2

.1C cos2 �/.1C cos2 � 0/
(4.5.20)

near the resonance at ! D ˝e . In this case, only the x mode is involved in resonant
scattering. The enhancement associated with resonant scattering is limited by the
dispersion itself: sufficiently near the resonance, the approximations (4.5.18) in
which the refractive index is set to unity and the longitudinal part of the polarization
is neglected is not justified. Near the resonance one has

n2x 
 1 � X

1 � Y ; Lx 
 X sin �

1 � Y
; (4.5.21)
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and both diverge at the resonance. From (4.5.21) it follows that the neglect of the
terms proportional to X is invalid for 1 � Y�<X . This suggests that the maximum
enhancement is by a factor 
 1=4.1 � Y /2 
 1=4X2 D .˝e=!p/

4=4. However,
this estimate neglects the derivatives of the refractive index in (4.5.16)

nx
@

@!
.!nx/ 
 1C X

2.1� Y /2
; (4.5.22)

suggesting that the neglect of the terms involvingX is valid only for 2.1�Y 2/ � X ,
and that the enhancement is limited to a much smaller factor 
 1=4.1 � Y /2 

1=2X D .˝e=!p/

2=2. Note that the factor (4.5.22) does not appear in the cross
section (4.5.13), due to the cancelation of two effects, and the implied large
enhancement of the cross section forX < 1�Y < .X=2/1=2 needs to be interpreted
with care.

Resonant scattering can give a large enhancement only if thermal effects are
neglected. Thermal effects modify the dispersion near the cyclotron resonance,
limiting the enhancement. To be consistent, when thermal effects are included in the
wave dispersion, they also need to be included in the scattering itself. Specifically,
one needs to average the probability for scattering over the thermal distribution of
particles assumed to determine the wave dispersion. Averaging the enhancement
factor for resonant scattering over a thermal distribution leads to

!2e
.2
/1=1Ve

Z 1

�1
dvz e

�v2z =2V 2e
.! �˝e � kzvz/2

D � ˝2
e

k2z V
2
e

Œ1C ye	.ye/�; (4.5.23)

with ye D .! � ˝e/=
p
2 jkzjVe, and where Z.y/ is a form of the nonrelativistic

plasma dispersion function. The maximum value of the integral (4.5.23) is for
y of order unity. This implies that the maximum enhancement factor in resonant
scattering is limited by thermal effects to 
 c2=V 2

e in ordinary units.
Another case of interest is where the density of the scattering electrons is so low

that their contribution to the wave dispersion can be neglected in comparison with
the contributions of the birefringent vacuum, as discussed in � 8.4. The two modes
of the birefringent vacuum may be labeled ?, k, with T? D 0, Tk D 1. In this
case, (4.5.16) gives

0
BB@

f??0

f?k0

fk?0

fk k0

1
CCA D 1C Y 2

2.1� Y 2/2

0
BB@

1

cos2 �
cos2 � 0

cos2 � cos2 � 0

1
CCAC

0
BB@

0

0

0

sin2 � sin2 � 0

1
CCA : (4.5.24)

It follows that there is a resonance at the cyclotron frequency in all four scattering
channels.

Such resonant scattering is thought to play a role in pair production in pulsars
[4, 10]. The scattering particles are highly relativistic and they scatter thermal
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photons from the neutron-star surface into high energy photons. In the rest frame
of the scattering particle the initial and final frequencies satisfy ! 
 !0 
 ˝e ,
and the boost in frequency occurs for the scattered photons in a forward cone on
transforming a to frame in which the scattering particle is highly relativistic.
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Chapter 5
Magnetized Dirac Electron

In this chapter the Dirac equation is solved for an electron in the presence of a
magnetostatic field. To solve the Dirac equation requires a specific choice of gauge
for the magnetostatic field, and a specific choice of the spin operator. It is then
possible to separate the wavefunction into a gauge- and spin-dependent factor and
a reduced wavefunction that satisfies a reduced form of the Dirac equation that
is independent of the choice of gauge and spin operator. In generalizing QED to
include the magnetic field exactly, the conventional momentum representation for
the Feynman amplitudes is not available, because momentum perpendicular to the
magnetic field is not conserved. However, the separation of the wavefunction allows
an analogous separation of the electron propagator and the vertex functions, with the
gauge-independent part closely analogous to the momentum-space representation in
the unmagnetized case. The gauge-dependent part (partially) describes the location
of the center of gyration of the electron, and how it changes in a QED interaction,
and such information is rarely of interest, and is simply ignored when using the
reduced theory.

The Dirac equation in a magnetostatic field is written down in � 5.1, and solutions
are found for a convenient but implicit choice of spin operator. Eigenfunctions
for well-defined spin operators are derived in � 5.2. The electron propagator in
a magnetostatic field is written down in � 5.3, and evaluated explicitly for the
magnetized vacuum. In � 5.4, the vertex function is written down and factorized into
a gauge- and spin-dependent part; the gauge-independent part is evaluated explicitly
for the different spin eigenfunctions. The reduced, gauge-independent formalism
is developed in � 5.5. Feynman rules for QPD processes in a magnetic field are
summarized in � 5.6.

Natural units („ D 1, c D 1) are used here, except where stated otherwise.

D. Melrose, Quantum Plasmadynamics: Magnetized Plasmas, Lecture Notes
in Physics 854, DOI 10.1007/978-1-4614-4045-1 5,
© Springer Science+Business Media New York 2013
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202 5 Magnetized Dirac Electron

5.1 Dirac Wavefunctions in a Magnetostatic Field

Explicit solutions of the Dirac equation in the presence of a magnetostatic field, B,
depend on the choice of gauge for the vector potential, A.x/, for B, and on the
choice of spin operator. However, the energy eigenvalues are independent of both
choices. In this section solutions of the Dirac equation are derived in the Landau
gauge, and for an implicit choice of spin operator.

5.1.1 Review of the Dirac Equation for B D 0

The Dirac wavefunction, �.x/, has four complex components, which are written
as a column matrix. Observable quantities are represented by operators which are
4 � 4 matrices. The Dirac matrices, ��, are four such matrices that are assumed to
transform as a 4-vector under a Lorentz transformation, and which satisfy

���� C ���� D 2g��; (5.1.1)

where it is implicit that the unit 4� 4 matrix multiplies 2g�� on the right hand side.
The covariant form of the Dirac equation is

.i=@�m/�.x/ D . O=p �m/�.x/ D 0; (5.1.2)

where the slash notation is defined by

=A D ��A�; =@ D ��@�; (5.1.3)

for any 4-vector A�. The Dirac Hamiltonian is identified as

OH D α � Op C ˇm; α D �0γ; ˇ D �0; (5.1.4)

with Op D �i@=@x. The Dirac adjoint of the wavefunction is defined by

�.x/ D � †.x/�0; (5.1.5)

and the adjoint of the Dirac equation in the form (5.1.2) becomes

�.x/ . O=p �m/ D 0; (5.1.6)

where the operators operate to the left.
A specific choice for the Dirac matrices needs to be made for the purposes of de-

tailed calculations, and here the standard representation is chosen. It corresponds to
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�0 D

0
BB@

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

1
CCA ; �1 D

0
BB@

0 0 0 1

0 0 1 0

0 �1 0 0

�1 0 0 0

1
CCA ;

�2 D

0
BB@

0 0 0 �i
0 0 i 0

0 i 0 0

�i 0 0 0

1
CCA ; �3 D

0
BB@

0 0 1 0

0 0 0 �1
�1 0 0 0

0 1 0 0

1
CCA : (5.1.7)

A convenient way of writing these and other 4 � 4 matrices is in terms of block
matrices. Let 0 and 1 be the null and unit 2 � 2 matrices. One writes

˙ D
�
σ 0
0 σ



; �x D

�
0 1
1 0



;

�y D
�

0 �i1
i1 0



; �z D

�
1 0
0 �1



; (5.1.8)

where the 2 � 2 matrices

�x D
�
0 1

1 0



; �y D

�
0 �i
i 0



; �z D

�
1 0

0 �1


; (5.1.9)

are the usual Pauli matrices. In this representation one has

�� D Œ�z; i�y˙ �; α D �x˙ ; ˇ D �z: (5.1.10)

5.1.2 The Dirac Equation in a Magnetostatic Field

The minimal coupling procedure for including an electromagnetic field with
4-potential A.x/ in the Dirac equation is to replace Op� by Op� C e OA�.x/, where
�e is the charge on an electron. The Dirac Hamiltonian (5.1.4) becomes

OH D α � Œp C eA.x/�C ˇm � e	.x/: (5.1.11)

A variety of choices is possible for A� D Œ	;A� for a uniform, magnetostatic
field, B, and all involve a dependence on at least one component of the 4-vector
x. All conventional choices satisfy the Coulomb gauge, div A D 0, but this does
not uniquely determined the gauge. With the magnetostatic field along the z-axis,
one choice of gauge is

A D .0; Bx; 0/; (5.1.12)
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which is called the Landau gauge here. Other choices of gauge are related to (5.1.12)
by adding the gradient of a scalar to A. One alternative choice of gauge is

A D .�By; 0; 0/; (5.1.13)

and another is the cylindrical gauge

A D 1
2
.�By;Bx; 0/ D 1

2
B$.� sin 	; cos	; 0/; (5.1.14)

with $ D .x2 C y2/1=2 and x D $ cos	, y D $ sin 	.
The introduction of a magnetostatic field leads to the Hamiltonian depending on

a spatial coordinate, with the specific coordinate depending on the choice of gauge.
This leads to a conceptual complication: our description of the system depends
in a nontrivial way on the choice of gauge. In the absence of the field, there are
plane wave solutions that depend on the components of x in the form exp.�iPx/,
where the components of P� are constants of the motion. In the presence of a
magnetostatic field, the component of P� conjugate to the component of x that
appears in the Hamiltonian is not conserved. With the choice of the Landau gauge
(5.1.12), one is free to seek solutions of the form exp.�iEt C iPyy C iPzz/, where
E;Py; Pz are constants of the motion, but the momentum, Px say, conjugate to
x is not a constant of the motion. Alternatively, with the choice (5.1.14), one is
free to seek solutions of the form exp.�iEt C iPzz C iP		/, where E , Pz and
the momentum P	 conjugate to 	 are constants of the motion, but the momentum
conjugate to the coordinate$ is not conserved. (It is possible to choose the temporal
gauge, with A D �Bt dependent on time, and then Px; Py; Pz are constants of the
motion, but the energy, P0 D E , is not conserved.) From these remarks it is clear
that the interpretation of the momentum components perpendicular to B requires
care. For the Landau gauge, Py is interpreted as specifying the x-component of
the center of gyration, and then the uncertainty principle implies that we have no
information on the value of the conjugate momentum, Px . With the choice (5.1.14),
it is the radial distance of the center of gyration from a particular field line that is
specified, and we then have no information on the conjugate (radial) momentum.

The detailed discussion below is for the Landau gauge (5.1.12), and some specific
results for the cylindrical gauge (5.1.14) are noted.

5.1.3 Construction of the Wavefunctions

One is free to assume a wavefunction of the form

�.t;x/ D f .x/ e�iEtCiPyyCiPzz D f .x/ e�i�."t�pyy�pzz/; (5.1.15)
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where � D ˙1 is the sign of the energy, whose magnitude is ". The function f .x/ is
a column matrix whose components are denoted by f1; f2; f3; f4. On inserting the
trial solution (5.1.15) into the Dirac equation in the form

�
i
@

@t
� OH



�.t;x/ D 0; (5.1.16)

with OH given by (5.1.11) and (5.1.12) in the Coulomb gauge, one requires

0
BB@

��"Cm 0 �pz OO1

0 ��"Cm OO2 ��pz

�pz OO1 ��" �m 0
OO2 ��pz 0 ��" �m

1
CCA

0
BB@

f1.x/

f2.x/

f3.x/

f4.x/

1
CCA D 0; (5.1.17)

OO1 D �i
�
@

@x
C �py C eBx



; OO2 D �i

�
@

@x
� �py � eBx



: (5.1.18)

It is convenient to write

� D .eB/1=2
�
x C �py

eB

	
; (5.1.19)

so that (5.1.17) reduces to

.��"Cm/f1 C �pzf3 � i.eB/1=2.� C d=d�/f4 D 0;

.��"Cm/f2 � �pzf4 C i.eB/1=2.� � d=d�/f3 D 0;

.��" �m/f3 C �pzf1 � i.eB/1=2.� C d=d�/f2 D 0;

.��" �m/f4 � �pzf2 C i.eB/1=2.� � d=d�/f1 D 0: (5.1.20)

Operating on the first and third of these equations with .��d=d�/ and on the second
and fourth with .�Cd=d�/, the four first order equations are replaced by two second
order equations:

�
d2

d�2
C "2 �m2 � p2z

eB
� .�2 C 1/

�
f1;3 D 0;

�
d2

d�2
C "2 �m2 � p2z

eB
� .�2 � 1/

�
f2;4 D 0: (5.1.21)

Equations (5.1.21) are of the same form as Schrödinger’s equation for a simple
harmonic oscillator. The solutions are simple harmonic oscillator wavefunctions.
As is familiar for a simple harmonic oscillator, normalizable solutions exist only
for discrete energy eigenvalues, specifically, .n C 1

2
/! for an oscillator with
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frequency !. The differential equations (5.1.21) have normalizable solutions only if
the constant n, defined by

n D "2 �m2 � p2z
2eB

; (5.1.22)

has non-negative integral values. It is convenient to introduce another non-negative
integer, l , by writing

2n� 1 D 2l C 1: (5.1.23)

The interpretation of n and l is simplest in the nonrelativistic limit: n is the Landau
quantum number that determines the perpendicular energy of the particle, and it
is composed of a gyromotion, which is simple harmonic motion with energy .l C
1
2
/˝ , and a spin part, 1

2
s˝ , with s D ˙1. In the relativistic case the corresponding

contributions are to p2? and they are .2l C 1/eB and seB , respectively.
The normalized solutions are the harmonic oscillator wavefunctions

vn.�/ D 1

.
p

2nnŠ/1=2

Hn.�/ e
��2=2; (5.1.24)

whereHn is a hermite polynomial. The differential operators in (5.1.20) become the
raising and lowering operators that satisfy
�
� C d

d�



vn.�/ D p

2n vn�1.�/;
�
� � d

d�



vn.�/ D

p
2.nC 1/ vnC1.�/:

(5.1.25)

A general solution of (5.1.20) may be written in the form

f .x/ D

0
BB@

C1vn�1.�/
C2vn.�/

C3vn�1.�/
C4vn.�/

1
CCA ; (5.1.26)

where C1; : : : ; C4 are constants. For convenience, so that (5.1.26) includes the
ground state n D 0, it is assumed that v�1.�/ is identically zero.

All the states except the ground state are doubly degenerate, as may be seen by
writing (5.1.23) in the form n D l C 1

2
.1C s/, with s D ˙1 as the spin eigenvalue.

The ground state, n D 0, has l D 0, s D �1, and states with n > 1 are doubly
degenerate with s D ˙1, l D n � 1

2
.1 C s/. The particle energy eigenvalues are

" D "n.pz/, with

"n.pz/ D .m2 C p2z C 2neB/1=2; n D l C 1
2
.1C s/: (5.1.27)

With the sign � included in P0 D �", the energy eigenvalues for positrons are
the same as for electrons: " D "n.pz/. Note that this fixes an ambiguity in the
choice of sign of the spin of the positron relative to the electron: the ground state is
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Fig. 5.1 The energy
eigenvalues for B=Bc D 1,
pz D 0 for n D 0; 1; : : : ; 7.
The uneven spacing between
the levels is referred to as the
anharmonicity. The levels for
spin states s D C1, s D �1
are degenerate except for the
ground state, n D 0, which
has s D �1

l D 0, s D �1 for both an electron and a positron. For convenience in notation, the
abbreviation "n.pz/ ! "n is used when no confusion should result.

The critical magnetic field, Bc , may be defined by writing (5.1.27) in the form
"n.pz/ D m.1C p2z =m

2 C 2nB=Bc/
1=2, with Bc D m2=e. In SI units this field is

Bc D m2c2

„e D 4:4 � 109 T: (5.1.28)

The energy eigenvalues are illustrated in Fig. 5.1, showing the two branches with
s D �1 and s D C1. The spacing between the energy eigenvalues decreases as
n increases. This is a relativistic effect. In contrast, in the nonrelativistic case, the
difference between neighboring eigenvalues is ˝ independent of n, as for a simple
harmonic oscillator. As a consequence the relativistic dependence of the energy
spacing on n is sometimes referred to as the anharmonicity.

Magnetic Moment of the Electron

The energy eigenvalues (5.1.27) may be written "n D .m2Cp2z Cp2n/1=2, with pn D
.2neB/1=2, and the two contributions to n D l C 1

2
.1C s/ may be interpreted as an

orbital part, described by l D 0; 1; 2; : : :, and a spin part, described by s D ˙1. The
orbital part describes the perpendicular motion, which is simple harmonic motion.
The remaining part is interpreted as the magnetic energy, �μ � B, due to a magnetic
dipole μ in the magnetic field. The Dirac theory predicts a magnetic moment (in SI
units) 1

2
g�Bs, where g is the gyromagnetic ratio, and where (SI units)

�B D e„=2me D 2:74 � 10�24 J T�1 (5.1.29)

is the Bohr magneton. The magnetic moment for a positron with spin s is � 1
2
g�Bs,

implying that the magnetic-moment eigenvalue can be written 1
2
g�B�s for either
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electrons or positrons. When radiative corrections are taken into account, the
gyromagnetic ratio, g D 2:00232 : : : is slightly greater than 2. In contrast, in the
nonrelativistic Pauli-Schrödinger theory the gyromagnetic ratio of the electron, that
is the ratio of the magnetic moment to the spin, is undetermined.

5.1.4 Johnson-Lippmann Wavefunctions

It is possible to write down four independent solutions of the Dirac equation without
identifying the spin operator explicitly. The procedure used here follows Johnson
and Lippmann [7].

One may construct two independent eigenstates for the doubly degenerate energy
eigenvalues by choosing the first two columns of the matrix of coefficients in
(5.5.11). This gives

0
BB@

C1
C2
C3

C4

1
CCA D cn

2
664
1C s

2

0
BB@

�"n Cm

0

�pz

ipn

1
CCAC 1 � s

2

0
BB@

0

�"n Cm

�ipn
��pz

1
CCA

3
775 ; (5.1.30)

with the normalization coefficient identified as cn D 1=Œ2�"n.�"nCm/V �1=2, where
the normalization is to an energy " in the volume V . The four solutions, written
��
q .t;x/ with q denoting the quantum numbers pz; n; s collectively, are

��
q .t;x/ D e�i�"tCi�pyyCi�pzz

Œ2�"n.�"n Cm/V �1=2

�

2
664
1C s

2

0
BB@

.�"n Cm/vn�1.�/
0

�pzvn�1.�/
ipnvn.�/

1
CCAC 1 � s

2

0
BB@

0

.�"n Cm/vn.�/

�ipnvn�1.�/
��pzvn.�/

1
CCA

3
775 : (5.1.31)

The solutions in the form (5.1.31) are referred to here as the Johnson-Lippmann [7]
wavefunctions.

Although the four solutions do not correspond to any sensibly defined spin
operator, in the nonrelativistic limit they may be interpreted loosely in terms of spin
up and down (s D ˙1) for an electron. However, this implicit spin operator loses
physical significance for an electron that is not at rest, and it does not describe the
spin of a positron in any meaningful way. When one is interested in spin-dependent
effects, the choice (5.1.31) is not appropriate, and a specific choice of spin operator
needs to be made (� 5.2). The choice (5.1.31) may be used when one is not interested
in the spin and where either a sum or an average over the spin states is performed.
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5.1.5 Orthogonality and Completeness Relations

The orthogonality relation between the wavefunctions for different eigenstates is of
the general form Z

d3x Œ� �
q .t;x/�

†��0

q0 .t;x/ D ı��
0

ıqq0 ; (5.1.32)

where q and q0 denote two sets of eigenvalues collectively. The completeness
relation for the wavefunctions is

X
�;q

� �
q .t;x/Œ�

�
q .t;x

0/�† D ı3.x � x0/: (5.1.33)

In the present case some of the quantum numbers are discrete (�, l , s) and some
are continuous (py , pz). The sum and the Kronecker ı are appropriate for discrete
quantum numbers, and for continuous quantum numbers, these are replaced by
integrals and Dirac ı-functions, respectively. To rewrite the sums as integrals, and
Kronecker ıs as Dirac ıs, one needs to take the normalization conditions into
account and ensure that the resulting integrals and Dirac ıs are dimensionless.

Consider the case where the particle is confined to a large but finite box, in which
case all the quantum numbers are discrete. Let the sides of the box be of length
Lx;Ly;Lz in the x; y; z directions, respectively. The eigenvaluespy , pz are discrete,
with values py D ny2
=Ly , pz D nz2
=Lz with ny; nz D 0;˙1;˙2; : : :. The sum
over all states includes sums over ny , nz. To identify the corresponding integrals and
Dirac ı-functions in the continuous limit, the box is allowed to extend to infinity.
The basic identification is that the difference between ny , ny C 1 corresponds to a
difference ıpy D 2
=Ly in py , and the difference between nz, nz C 1 corresponds
to a difference ıpz D 2
=Lz in pz. The sum over states becomes

X
q

D
X
�;sD˙

1X
nD0

LyLz

Z
dpy

2


Z
dpz

2

: (5.1.34)

The Kronecker ı that expresses the orthogonality of the states becomes

ıqq0 D ıss0ınn0

2


Ly
ı.py � p0

y/
2


Lz
ı.pz � p0

z/: (5.1.35)

These results apply for the Landau gauge. There are analogous results for other
choices of gauge. In particular, for the cylindrical gauge, Ly

R
dpy=2
 in (5.1.34)

and .2
=Ly/ı.py � p0
y/ in (5.1.35) are replaced by

P
r and ırr 0 , where r is the

radial quantum number introduced in (5.2.26) below.
The normalization is implicit in (5.1.31), and evaluating the integral in (5.1.32)

the factor on the right hand side of (5.1.32) is .1=eB/1=2LyLz=V . In the cylindrical
gauge, the natural normalization of the wavefunctions corresponds to 1=AeB
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charges in the volume V D ALz with A D 
R2 where R is the radius of the
normalization cylinder. The normalization condition leads to the identifications

Lx D
�
1

eB


1=2
; A D 
R2 D 1

eB
; (5.1.36)

in these two cases, respectively.

5.2 Spin Operators and Eigenfunctions

In this section solutions are constructed for specific spin operators. Two operators
are chosen: the helicity operator and the parallel (to B) component of the magnetic-
moment operator. The solutions are derived in the Landau gauge (5.1.12); a solution
is also written down for the choice of the cylindrical gauge (5.1.14). An important
point, first made by Sokolov and Ternov [14], is that there is a preferred choice of
spin operator for an electron in a magnetic field, and this is the component of the
magnetic-moment operator along the magnetic field. The eigenstates of other spin
operators precess about the magnetic field. Other arguments for this preference have
also been given [4–6]. The helicity states are written down here for comparison, and
to emphasize that the solutions depend on the choice of spin operator.

5.2.1 Helicity Eigenstates in a Magnetic Field

The helicity operator, ˙ � Op, in the absence of a magnetic field is the time-component
of a 4-vector. This operator commutes with the Hamiltonian and hence is a constant
of the motion. As a consequence there are well-defined simultaneous eigenstates
of both the Hamiltonian and the helicity operator. When a magnetostatic field is
included, using the minimal coupling assumption, the helicity operator becomes

Oh D ˙ � . Op C eA/: (5.2.1)

The helicity is a constant of the motion in the presence of a magnetic field, provided
that there is no electric field. Hence we can construct simultaneous eigenstates of
this operator and of the Hamiltonian.

Evaluating the helicity operator in the Landau gauge gives

˙ � Œ Op C eA� D

0
BB@

�pz OXC 0 0
OX� ��pz 0 0

0 0 �pz OXC
0 0 OX� ��pz

1
CCA ; OX˙ D �ipeB

�
@

@�
˙ �



: (5.2.2)
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Let the eigenvalues of the helicity operator be ˙h, with the magnitude, h, to be
determined. The sign of the spin eigenvalue depends on the spin quantum number,
� D ˙1. The sign � D �1 is required for the ground state, and one finds this
condition is satisfied only if the helicity eigenvalue is written as ��Ph with P D
pz=jpzj. Hence, the eigenvalue equation is

˙ � Œ Op C eA�� �
q .t;x/ D ��Ph��

q .t;x/: (5.2.3)

The only change from the Johnson-Lippmann wavefunctions is in the coefficients
Ci in (5.1.26). For the helicity states, in place of (5.1.30), the coefficients Ci are
determined by (5.2.3), which is regarded as an eigenvalue equation. The explicit
form of this equation is

0
BB@

�pz � ��Ph �ipn 0 0

ipn ��pz � ��Ph 0 0

0 0 �pz � ��Ph �ipn
0 0 ipn ��pz � ��Ph

1
CCA

0
BB@

C1
C2
C3

C4

1
CCA D 0: (5.2.4)

The determinant of the matrix of coefficients in (5.2.4) is .h2�p2n�p2z /2. Setting this
to zero, it follows that the eigenvalues of the helicity operator are doubly degenerate
with eigenvalues of magnitude

h D �
p2n C p2z

�1=2 D �
"2n �m2

�1=2
: (5.2.5)

If the eigenvalues were not degenerate, the eigenfunctions could be constructed
from the inverse of the square matrix in (5.2.4), but the degeneracy precludes this
procedure because the inverse of the matrix of coefficients (5.2.4) is singular.

Simultaneous eigenfunctions of the helicity and energy may be constructed by
starting with an arbitrary linear combinations of the doubly degenerate Johnson-
Lippmann wavefunctions (5.1.31). The ratio of the coefficients in the combination
is found by applying the helicity operator and requiring that the eigenvalues be
�Ph. The solution is determined only to within an arbitrary phase factor for
each eigenfunction. For any choice of spin operator, the ground state (n D 0)
wavefunction has the same form as for the Johnson-Lippmann wavefunctions, and
this requires the presence of the sign �P in (5.2.3). The helicity eigenfunctions may
be written in a variety of equivalent forms, by making particular choices of the
overall and relative phases of the different eigenfunction, and by using the identity

pn D Œ.hC � jpzj/.h� � jpzj/�1=2: (5.2.6)

Specific simultaneous eigenfunctions of the helicity operator (eigenvalues ��Ph)
and of the Hamiltonian (eigenvalues �"n) correspond to
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0
BB@

C1
C2

C3
C4

1
CCA D 1

Œ2h2"nV �1=2

0
BB@

Œ"n C �m�1=2 .hC � jpzj/1=2
i��P Œ"n C �m�1=2 .h� � jpzj/1=2
�P Œ"n � �m�1=2 .hC � jpzj/1=2
i�Œ"n � �m�1=2 .h� � jpzj/1=2

1
CCA ; (5.2.7)

with "n given by (5.1.27), with h given by (5.2.5) and with P D pz=jpzj.

5.2.2 Magnetic-Moment Eigenstates

The magnetic-moment operator in the absence of a magnetic field is

Oμ D m˙ � iγ � Op: (5.2.8)

In the presence of a magnetic field the minimal coupling assumption implies that
the magnetic-moment operator and its z-component in the Landau gauge are

Oμ D m˙ � iγ � . Op C eA/; O�z D

0
BB@

m 0 0 OXC
0 �m � OX� 0

0 � OXC m 0
OX� 0 0 �m

1
CCA ; (5.2.9)

respectively, with OX˙ defined by (5.2.2). The simultaneous eigenvalues of the
operator (5.2.9) and the Hamiltonian are found in the same way as for the helicity
operator. Suppose that eigenvalues of O�z are s�, with � yet to be determined. The
operator OX˙ has eigenvalues �ipn, and in place of (5.2.4), one finds

0
BB@

m � s� 0 0 �ipn
0 �m � s� �ipn 0

0 ipn m � s� 0

ipn 0 0 �m � s�

1
CCA

0
BB@

C1
C2

C3
C4

1
CCA D 0: (5.2.10)

The determinant of the matrix of coefficients gives .�2 � m2 � p2n/
2. Hence, there

are degenerate eigenfunctions with eigenvalues s�, s D ˙1, with � D "0n,

"0n D �
m2 C p2n

�1=2 D �
"2n � p2z

�1=2
: (5.2.11)

The eigenfunctions are linear combinations of the Johnson-Lippmann wavefunc-
tions. The ground state (n D 0, s D �1) must be the same (to within an arbitrary
phase) for all choices of spin operator. One finds that simultaneous eigenfunctions
of the Hamiltonian and magnetic-moment operators correspond to
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0
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1
CCA D 1

V 1=2

0
BB@
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a��s bs
is a�s b�s

1
CCA ;

a˙ D P˙
�
"n ˙ "0n
2"n


1=2
; bs D

�
"0n C sm

2"0n


1=2
: (5.2.12)

where the identities pz D 2"n a�sa��s , pn D 2"0n bsb�s are used. The sign

P˙ D 1
2
.1C P/˙ 1

2
.1 � P/; P D pz=jpzj; (5.2.13)

is equal to unity for aC and to P for a�. The overall phase of either eigenfunction
is arbitrary, and so are the relative phase of the four eigenfunctions; these phases are
chosen for convenience in writing down the form (5.2.12).

An alternative form for the solutions (5.2.12), written down by Sokolov and
Ternov [14], involves the sum and difference of .1 ˙ pz="n/

1=2 in place of the a˙.
The identities

"0n D ."n ˙ pz/
1=2."n � pz/

1=2; "n ˙ "0n D 1
2

�
."n C pz/

1=2 ˙ ."n � pz/
1=2
�2
;

(5.2.14)

relate the two notations. The choice of eigenfunctions made by Sokolov and
Ternov [14] is 0
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1
CCA D 1
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2V

0
BB@

B1.A1 C A2/

�iB2.A1 �A2/
B1.A1 �A2/
iB2.A1 C A2/

1
CCA ; (5.2.15)

A1 D
�
1C �pz

"n


1=2
; A2 D s�

�
1 � �pz

"n


1=2
;

B1 D
�
1C sm

"0n


1=2
; B2 D s

�
1 � sm

"0n


1=2
: (5.2.16)

The relative phases of the four eigensolutions are again chosen for convenience in
writing.

The magnetic-moment eigenfunctions and the Johnson-Lippmann wavefunctions
are equivalent for nonrelativistic electrons. This may be seen by setting � D 1 in
(5.2.12), and making the nonrelativistic approximation in the form

"n D mC p2z C p2n

2m
; "0n D mC p2n

2m
: (5.2.17)
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When only first order terms in pz=m, pn=m are retained, the wavefunctions
are equivalent. This justifies the use of the Johnson-Lippmann wavefunctions for
nonrelativistic electrons. For positrons the Johnson-Lippmann wavefunctions do not
correspond to any physically relevant spin eigenfunctions, and they should not be
used even for nonrelativistic positrons.

5.2.3 Eigenstates in the Cylindrical Gauge

Suppose that in place of the Landau gauge (5.1.12) one chooses the cylindrical
gauge (5.1.14), viz.

A D 1
2
.�By;Bx; 0/ D 1

2
B$.� sin 	; cos	; 0/; $ D .x2 C y2/1=2;

(5.2.18)

with x D $ cos	, y D $ sin	. In this case, z and 	 are ignorable coordinates. In
place of (5.1.15) an appropriate trial wavefunction is

�.t;x/ D g.$; 	/ exp.�i�"t C i�pzz/: (5.2.19)

In place of (5.1.17), the Dirac equation gives
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: (5.2.20)

The dependence on 	 is satisfied by the choice

g1.$; 	/ D g1.$/ expŒi.a � 1/	�; g2.$; 	/ D g2.$/ expŒia	�;

g3.$; 	/ D g3.$/ expŒi.a � 1/	�; g4.$; 	/ D g4.$/ expŒia	�; (5.2.21)

with a D 0;˙1;˙2; : : :. In place of (5.1.20) one finds
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g3 D 0;
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g1 D 0: (5.2.22)

In place of (5.1.21) one finds
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The normalizable solutions of (5.2.23) are generalized Laguerre polynomialsL�n.x/,
specifically the functions

J n� .x/ D ŒnŠ=.nC �/Š�1=2 exp
�� 1

2
x
�
x
1
2 � L�n.x/: (5.2.24)

In place of (5.1.26) one obtains the solutions
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CCCCCCA
; (5.2.25)

with the so-called radial quantum number identified as

r D n � a: (5.2.26)

The construction of specific spin eigenstates involves only the determination of
the ratios of the Ci , and these are the same for all choices of gauge, including the
Landau and cylindrical gauges. Hence, the values (5.1.30), (5.2.7) and (5.2.12) for
the Ci , for the Johnson-Lippmann, helicity and magnetic-moment eigenfunctions,
respectively, also apply for the choice of the cylindrical gauge.

5.2.4 Average over the Position of the Gyrocenter

The gauge-dependent quantum number that (partially) described the position of the
gyrocenter. One can establish the relation between the gauge-dependent quantum
number and the position of the gyrocenter by performing appropriate averages.
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For the Landau gauge, on inserting the wavefunctions (5.1.31) into

hxi D
Z
d3x x Œ��

q .t;x/�
†��

q .t;x/; (5.2.27)

the y- and z-integrals are trivial. The integral over x is rewritten as an integral over
� D .eB/1=2.x � �py=eB/, which reduces to

hxi D � �py

eB
: (5.2.28)

Thus the mean x-position of the gyrocenter, hxi, is determined bypy . By calculating
hx2i one can estimate the fluctuations in the position of the gyrocenter about this
mean. In the cylindrical gauge the mean value of the square of the radial distance
($2 D x2 C y2) is [14]

h$2i D 1

eB
.2nC 2r C 1/: (5.2.29)

In the non-quantum limit h$2i is equal toR2Ca2, whereR is the radius of gyration
and a is the radial distance of the center of gyration from the z-axis. The radius of
gyration in the non-quantum limit isR D .2n=eB/1=2, and hence the radial distance
of the center of gyration from the z-axis is related to .2r=eB/1=2. This justifies the
interpretation of r as specifying the mean radial position of the center of gyration.

For most purposes the position of the center of gyration is irrelevant and one
either ignores it or averages over it. In the Landau gauge this average involves the
operation

OOav D 1

Lx

Z Lx=2

�Lx=2
dx ! 2


eBLx

Z
dpy

2

; (5.2.30)

where (5.2.28) is used. The coefficient on the right hand side of (5.2.30) reduces
to 2
=.eB/1=2 with the normalization condition, Lx D 1=.eB/1=2. Similarly, in the
cylindrical gauge the average involves the operation

OOav D 1

A

Z 2


0

d	

Z 1

0

d$$ ! 2


AeB

X
r

; (5.2.31)

where the integrand is assumed to be independent of 	, and where A D 1=eB is the
normalization area, so that the coefficient on the right hand side of (5.2.31) reduces
to 2
 .
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5.3 Electron Propagator in a Magnetostatic Field

The electron propagator is derived in this section both for an arbitrary magnetized
electron gas, and for the magnetized vacuum. The explicit form of the propagator
depends on the choices of gauge and of spin operator. The gauge-dependence can
be expressed in terms of a phase factor. Explicit evaluation is possible for the
propagator in the magnetized vacuum, which can be written in several superficially
different forms, one of which involves a single integral over elementary functions.

5.3.1 Statistically Averaged Electron Propagator

The statistically averaged electron propagator in coordinate space is

NG.x; x0/ D
X
�;q

� �
q .x/�

�
q.x

0/
Z
dE

2

e�iE.t�t 0/

�
�

1 � n�q
E � �."q � i0/ C n�q

E � �."q C i0/

�
: (5.3.1)

In (5.3.1) the electrons (� D 1) and positrons (� D �1) have energy eigenvalues
"q and occupation numbers n�q , where q describes any appropriate set of quantum
numbers for an electron in a magnetostatic field. On inserting the wavefunctions
given in � 5.2 for a particular choice of gauge and of spin operator into (5.3.1), one
obtains an explicit form for the propagator. Although the resulting expression for
the propagator is gauge dependent, the gauge-dependent part may be separated out
into a single multiplicative function, 	.x; x0/. To see this, it is helpful to consider
the explicit form in both the Landau and cylindrical gauges.

In the Landau gauge, the sum over states includes an integral over py , which is
evaluated using

1

.eB/1=2

Z
dpy vn.�/vn.�

0/ ei�py .y�y0/ D 	.x; x0/ e�R2=4 Ln.R2=2/;

R2 D eBŒ.x � x0/2 C .y � y0/2�; (5.3.2)

where Ln is the Laguerre polynomial of order n. All the gauge dependence appears
in the function

	.x; x0/ D exp
��ieB 1

2
.x C x0/.y � y0/

�
: (5.3.3)

The phase factor (5.3.3) applies in the Landau gaugeA� D .0; 0; Bx; 0/, and it may
be written

	.x; x0/ D exp

"
�ie

Z x0

x

dx00
�A

�.x00/
#
; (5.3.4)
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where the integral is along the straight line between the two end points. (For
example, write x00� D x� C ˛.x0 � x/�, x� D .t; x; y; z/, etc., and integrate over
0 � ˛ � 1.) A generalization, introduced by Schwinger [13], is

	.x; x0/ D exp

(
�ie

Z x0

x

dx00
�

�
A�.x00/C 1

2
F ��x00

�

� � 1
2
iex�x

0
�F

��

)
; (5.3.5)

which applies along an arbitrary path between the end points.
In the analogous derivation in the cylindrical gauge, (5.1.14), the sum is over the

radial quantum number r , and is performed using

1X
rD0

J rn�r
�
eB$2

2



J rn�r

�
eB$ 02

2



ei.n�r/.	�	0/ D 	.x; x0/e� 1

4 R
2

Ln

�
R2

2



;

(5.3.6)

with $2 D x2 C y2, $ 02 D x02 C y02. The gauge-dependence in (5.3.6) is written
in terms of the factor 	.x; x0/, again given by (5.3.4) but now for the cylindrical
gauge.

Gauge-Independent Form for the Propagator

The sum over states in the expression (5.3.1) for the propagator gives

X
q

��
q .x/�

�
q.x

0/ D .i=@C e=A.x/Cm/	.x; x0/
1X
nD0

eB

2


Z
dpz

2


ei�pz.z�z0/

2�"n

� e�R2=4 �PCLn�1.R2=2/C P�Ln.R2=2/
�
; P˙ D 1

2
.1˙˙z/;

(5.3.7)

with Ln.R2=2/ assumed to be identically zero for n < 0. The differential operator
.i=@ C e=A C m/ operates on all quantities to its right when (5.3.7) is inserted into
(5.3.1). This differential operator is gauge-dependent, and it may be commuted with
the gauge-dependent factor, 	.x; x0/,

.i=@C e=A.x/Cm/	.x; x0/ D 	.x; x0/.i=@C e=b.x � x0/Cm/;

b�.x/ D �
0; 1

2
B � x

�
: (5.3.8)

The remaining operator, .i=@ C e=b.x/ C m/, which operates on all quantities to its
right when (5.3.7) is inserted into (5.3.1), is independent of the choice of gauge.
Hence, all the gauge dependence remains in the phase factor 	.x; x0/. In general,
the occupation numbers in (5.3.1) depend on n, pz and are different for electrons
(� D 1) and positrons (� D �1), so that no further evaluation of (5.3.7) is possible
in general.
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Géhéniau Form for the Electron Propagator

In vacuo the occupation numbers in (5.3.1) are zero, and the sum over n and the
integral over pz in (5.3.7) may be evaluated explicitly. The first step is to perform
the integral over E in (5.3.1), which gives a step function

Z
dE

2


e�iE.t�t 0/

E � �."q � i0/ D �i� H ��.t � t 0/
�
e�i�"n.t�t 0/: (5.3.9)

The multiplicative factor of � cancels with a corresponding factor in (5.3.7). The
integral over pz and the sum over n can now be performed explicitly.

The integral over pz is rewritten using the identity

Z
dpz

"n
e�i�Œ"n.t�t 0/�pz.z�z0/� D

Z 1

0

d�

�
exp

�
�i� t � t 0

jt � t 0j
�
�2�

2
C ."0n/

2

2�


�
;

�2 D .t � t 0/2 � .z � z0/2;
�
"0n
�2 D m2 C 2neB: (5.3.10)

In view of the step function in (5.3.9), the integral is nonzero only for �.t � t 0/=jt �
t 0j D 1, and the exponent in (5.3.10) simplifies accordingly. The sum over n is
performed using a generating function for the Laguerre polynomials,

1X
nD0

ei˛nLn.R
2=2/ D i

e
1
2 i˛

2 sin 1
2
˛
eR

2=4 e� 1
2 i cot 12 ˛: (5.3.11)

with ˛ D �eB=�.
The resulting expression for the propagator for the magnetized vacuum is

G.x; x0/ D �	.x; x0/.i=@C e=b.x � x0/Cm/

Z 1

0

d�

8
2
1 � i˙z tan.eB=2�/

.2�=eB/ tan.eB=2�/
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ieBŒ.x�x0/2C.y�y0/2�

4 tan.eB=2�/
C i�

2
Œ.z�z0/2�.t�t 0/2�� im

2

2�

�
:

(5.3.12)

Then (5.3.12) gives the Géhéniau form propagator [1, 2, 8, 9]

G.x; x0/ D 	.x; x0/�.x � x0/; (5.3.13)

with the gauge-independent part, �.x/, given by

�.x/ D � eB

16
2

Z 1

0

d�

�
B.�; x/ exp


 �ieB.x2/?
4 tan.eB=2�/

� i�.x2/k
2

� im2

2�

�
;

(5.3.14)
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with .x2/? D �x2 � y2, .x2/k D t2 � z2, and with

B.�; x/ D �
.�x/? 1

2
eB cot.eB=2�/C �.�x/k C e=b.x/

�
Œcot.eB=2�/� i˙z�

D

0
BB@

.�t Cm/C� 0 ��zC� �R�CC
0 .�t Cm/CC �RCC� �zCC

�zC� R�CC .��t Cm/C� 0

RCC� ��zCC 0 .��t Cm/CC

1
CCA ;

R˙ D 1
2
eB.x C iy/; C˙ D cot.eB=2�/˙ i: (5.3.15)

To ensure convergence of the integral, � is to be interpreted as .1C i0/�.

5.3.2 Electron Propagator as Green Function

The propagator in a magnetized vacuum can also be constructed as a Green
function1 by solving the inhomogeneous Dirac equation with the external electro-
magnetic field included, that is, by solving

.i=@C e=A.x/�m/G.x; x0/ D ı4.x � x0/: (5.3.16)

It is convenient to introduce a new function S.x; x0/ by writing

G.x; x0/ D .i=@C e=A.x/Cm/S.x; x0/; (5.3.17)

such that (5.3.16) is replaced by

�
D�D� Cm2 � eS��F��.x/

�
S.x; x0/ D ı4.x � x0/;

D� D @� � ieA�.x/; S��F�� D iα � E � ˙ � B: (5.3.18)

The form (5.3.18) applies for an arbitrary static electromagnetic field. On specializ-
ing to a static magnetic field and choosing the Landau gauge (5.1.12) and (5.3.18)
reduces to
"
@2

@t2
� @2

@x2
� @2

@z2
�
�
@

@y
C ieBx


2
Cm2 C e˙ � B

#
S.x; x0/ D ı4.x � x0/:

(5.3.19)

1“Green function”, rather than “Green’s function”, was proposed by J.D. Jackson, Classical
Electrodynamics, Third Edition, John Wiley & Sons Inc. (1999).
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A solution of (5.3.19) is found by firstly solving for the corresponding
Klein-Gordon equation, which is similar to (5.3.19) but with the term �e˙ � B

omitted. Let the solution of the Klein-Gordon equation be G0.x; x0/. One has

"
@2

@t2
� @2

@x2
� @2

@z2
�
�
@

@y
C ieBx


2
Cm2

#
G0.x; x

0/ D ı4.x � x0/: (5.3.20)

The solution, S.x; x0/, of (5.3.19) follows from the solution of (5.3.20) forG0.x; x0/
by formally replacingm2 by m2 C e˙ � B.

The solution of the inhomogeneous equation (5.3.20) forG0.x; x0/ is constructed
by first considering the solutions of the homogeneous equation. With a trial solution
of the form f .x/ expŒ�i.Et � Pyy � Pzz/�, one finds that solutions exist only for
E D �"n, "n D Œm2Cp2z C.2nC1/eB�1=2 for n � 0, with Py D �py; Pz D �pz and
with the solution for a given n having f .x/ D vn.�/, with vn.�/ the simple harmonic
oscillator wavefunction (5.1.26), and with � given by (5.1.19). The identity

1X
nD0

vn.�/vn.�
0/ D ı.� � � 0/ (5.3.21)

allows one to write

ı3.x � x0/ D .eB/1=2
1X
nD0

vn.�/vn.�
0/
Z
dpydpz

.2
/2
ei�Œpy .y�y0/Cpz.z�z0/�; (5.3.22)

with � D .eB/1=2.x � �py=eB/, � 0 D .eB/1=2.x0 � �py=eB/. In order that the time
dependence satisfy (5.3.20) one requires thatG0.x; x0/ be continuous at t D t 0 with
a discontinuous first derivative,

@G0.x; x
0/

@t

ˇ̌
ˇ̌
tDt 0

D ı3.x � x0/; (5.3.23)

as required by the integral of (5.3.20) over t . On integrating (5.3.23) over time the
choice of the sign of .t � t 0/=jt � t 0j determines whether the propagator is in its
retarded (.t � t 0/=jt � t 0j > 0), advanced (.t � t 0/=jt � t 0j < 0) or Feynman (�.t �
t 0/=jt � t 0j > 0) forms. Here we require the Feynman form, which is

G0.x; x
0/ D i�H

�
�.t � t 0/

�
.eB/1=2

1X
nD0

Z
dpydpz

.2
/2
vn.�/vn.�

0/
�"n

� e�i�Œ"n.t�t 0/�py.y�y0/�pz.z�z0/�: (5.3.24)

The py-integral is the same as in (5.3.2), and the pz-integral is closely analogous to
(5.3.10). The sum over n is performed using (5.3.11). The resulting expression is
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G0.x; x
0/ D �eB

2

	.x; x0/

Z 1

0

d�

8
2
e�im2=2�

.2�=eB/ sin.eB=2�/

� exp



ieBŒ.x � x0/2 C .y � y0/2�

4 tan.eB=2�/
C i�

2
Œ.z � z0/2 � .t � t 0/2�

�
:

(5.3.25)

The propagator has a physical intepretation as the propagator for a charged (q D �e)
spinless particle that satisfies the Klein-Gordon equation.

The electron propagator is obtained from (5.3.25) by noting that the replacement
m2 ! m2 C e˙ � B, with ˙ � B D ˙zB , converts the scalar function into a 4 � 4
matrix by introducing an additional factor

e�ie˙zB=2� D cos.eB=2�/� i˙z sin.eB=2�/ (5.3.26)

into the integrand. The additional factor (5.3.26) converts G0.x; x0/, as given by
(5.3.25), into S.x; x0/, and then the propagator (5.3.12) follows from (5.3.17) and
(5.3.8).

5.3.3 Spin Projection Operators

The Dirac matrices P˙, introduced in (5.3.7), play the role of projection operators
onto the eigenstates of ˙z. With P˙ D 1

2
.1˙˙z/ and ˙2

z D 1, one has

.P˙/2 D P˙; PCP� D 0; PC C P� D 1; PC � P� D ˙z: (5.3.27)

The projection operators have the standard matrix representations

PC D

0
BB@

1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

1
CCA ; P� D

0
BB@

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

1
CCA : (5.3.28)

These projection operators commute with the Dirac matrices ��k , but not with

�
�

?. Specifically, the relations

�
�

k ˙z D ˙z�
�

k ; �
�

?˙z D �˙z�
�

?; (5.3.29)

imply

�
�

k P˙ D P˙��k ; �
�

?P˙ D P���?: (5.3.30)
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5.4 Vertex Function in a Magnetic Field

In this section, the vertex function for an electron in a magnetic field is evaluated
explicitly for the three choices of spin wavefunctions (Johnson-Lippmann, helicity
and magnetic moment) made in � 5.2.

5.4.1 Definition of the Vertex Function

In developing QED for an electron gas in a magnetostatic field it is convenient to
use the vertex formalism. This formalism is based on the fact that a Dirac matrix,
�� say, always appears in matrix multiplication along an electron line between a
Dirac wavefunction and an adjoint Dirac wavefunction. Consider an electron line
with vertices corresponding to �� at x0 and �� at x. With the propagator in the
form (5.3.1), one may associate the adjoint wavefunction, ��

q.x
0/, with �� and the

wavefunction ��
q .x/ with �� . (The time-dependence of the wavefunction, e�i�"q , is

omitted in defining the vertex function.) The other electron line joining the vertex at
x0 corresponds to either an initial electron, a final positron or to another propagator,
and in all three cases there is another wavefunction, ��0

q0 .x
0/ say, associated with

it. In an analogous manner, the electron line joining the vertex at x corresponds
to a final electron, an initial positron or to another propagator, and in all three
cases there is another wavefunction, ��00

q00.x/ say, associated with it. It follows
that all wavefunctions and adjoint wavefunctions are paired together with a � -
matrix. Specifically, this leads to a (coordinate-space) vertex function of the form
��0

q0.x/�
���

q .x/.
A momentum-space representation of the vertex function is introduced by

Fourier transforming:

Œ��
0�
q0q.k/�

� D
Z
d3x e�ik�x � �0

q0 .x/�
���

q .x/: (5.4.1)

The evaluation of this function depends on the specific choice of gauge and of the
spin operator. The vertex function (5.4.1) factorizes into a gauge-dependent factor
and a gauge-independent part

h
��

0�
q0q.k/

i� D d�
0�
q0q.k/

h
� �0�
q0q .k/

i�
; (5.4.2)

where the factor d�
0�
q0q.k/ contains all the gauge-dependent factors. The gauge-

independent vertex function, Œ� �0�
q0q .k/�

�, remains dependent on the choice of spin

operator. The normalization of the factor d�
0�
q0q.k/ is determined by requiring that it

satisfy the identity

d�
0�
q0q.k1 C k2/ D

X
Qq00

d�
0�00

q0q00 .k2/ d
�00�
q00q.k1/; (5.4.3)
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where the sum over Qq00 is over the gauge-dependent quantum number (p00
y or r 00)

and p00
z .

Symmetry Properties of the Vertex Function

The reality condition for Fourier transforms implies that the vertex function satisfies
the identity

Œ��
0�
q0q.k/�

�� D Œ���
0

qq0 .�k/��: (5.4.4)

Both the gauge-dependent and the gauge-independent parts in (5.4.2) separately
satisfy this property:

Œd �
0�
q0q.k/�

� D d��
0

qq0 .�k/; Œ� �0�
q0q .k/�

�� D Œ� ��0

qq0 .�k/��: (5.4.5)

A further possible symmetry property follows by changing the signs �, �0, but such
symmetry depends on the choice of spin eigenfunctions. There is no such symmetry
for the Johnson-Lippmann wavefunctions, cf. (5.1.30), and the symmetry properties
can be seen by inspection of (5.2.7) for the helicity states, and by inspection of
(5.2.12) for the magnetic-moment states.

The vertex function also satisfies the relation

k�

h
� �0�
q0q .k/

i� D .! � �"q C �0"0
q0/
h
� �0�
q0q .k/

i0
: (5.4.6)

The right hand side of (5.4.6) is zero only when the resonance condition, ! � �"q C
�0"0

q0 D 0, is satisfied.

Landau Gauge

To illustrate the factorization (5.4.2), consider its explicit forms in the Landau gauge
and in the cylindrical gauge. The wavefunctions in the Landau gauge are given by
(5.1.31). Let the components of k be written

k D .k? cos ; k? sin ; kz/ D jkj.sin � cos ; sin � sin ; cos �/: (5.4.7)

(The azimuthal angle  may be set to zero without loss of generality only when a
single wave is involved.) Then in (5.4.1) with (5.4.7), the integrals over y and z are
trivial. The integral over x reduces to a standard integral [3]

Z 1

�1
dx e�ikxx vn0.� 0/vn.�/ D .eB/�1=2eikx.�pyC�0p0

y /=2eB

� fiei gn�n0

J nn0�n.k
2?=2eB/; (5.4.8)
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with ky D �py � �0p0
y D kx tan and where the function J n� .x/ is defined

by (5.2.24). The functions J n� .x/ play an important role in the theory, and their
properties are summarized in �A.1.5. The gauge-dependent factor for the Landau
gauge is identified as

d�
0�
q0q.k/ D eikx.�pyC�0p0

y /=2eB

V .eB/1=2
2
ı.�py � �0p0

y � ky/ 2
ı.�pz � �0p0
z � kz/:

(5.4.9)

Cylindrical Gauge

In the cylindrical gauge, the definition (5.4.1) of the vertex function is unchanged,
but it is to be evaluated in cylindrical polar coordinates $;	; z, rather than in
cartesian coordinates. The normalization factor changes in accord with (5.1.36). On
inserting the wavefunctions (5.2.19) with (5.2.25) into (5.4.1), the integral over z is
trivial, and the remaining integrals are of the form

Z 2
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d	

Z 1

0
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�
: (5.4.10)

The gauge-dependent factor for the cylindrical gauge is identified as

d�
0�
q0q.k/ D 2
 f�ie�i gr�r 0

J rr 0�r .k2?=2eB/
VeB

2
ı.�pz � �0p0
z � kz/: (5.4.11)

5.4.2 Gauge-Dependent Factor Along an Electron Line

The multiplicative property (5.4.3) implies that the gauge-dependence involves only
the initial and final states. It is straightforward to show this for the explicit forms,
(5.4.9) for the Landau gauge, and (5.4.11) for the cylindrical gauge.

Consider two vertices along an electron line. The Dirac matrices are written
according to matrix multiplication in the direction opposite to the arrow on the
electron line. Suppose the initial, intermediate and final states are labeled with
quantum numbers q; q00; q0, respectively. The sum over the intermediate state gives

X
q00

h
��

0�00

q0q00.k2/
i�h
��

00�
q00q.k1/

i� D
X
q00
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0�00
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i�h
� �00�
q00q .k1/

i�
:

(5.4.12)
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The sum separates into a gauge-dependent part and a gauge-independent part. For
the Landau gauge, the gauge-dependent part reduces to

X
q00

d�
0�00

q0q00.k2/ d
�00�
q00q.k1/ D LyLz

Z
dp00
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2


Z
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2
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0�00

q0q00 .k2/ d
�00�
q00q.k1/; (5.4.13)

where the sum over q00 reduces to the integrals over p00
y ; p

00
z . On inserting the explicit

form (5.4.9), the integrals are trivial. The result may be written in the form
X
q00

d�
0�00

q0q00 .k2/ d
�00�
q00q.k1/ D ei.k1
k2/z=2eB d �

0�
q0q.k1 C k2/; (5.4.14)

where Lx D 1=.eB/1=2 is used. The result (5.4.14) is independent of the choice of
gauge.

The result (5.4.14) generalizes to an arbitrary number of vertices along an
electron line. Specifically, for n vertices along a line, with 3-momentum ki emitted
at the i th vertex, one has
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: (5.4.15)

It follows that the choice of gauge affects the description only of the initial and final
states.

5.4.3 Vertex Function for Arbitrary Spin States

The form for the vertex function Œ� �0�
q0q .k/�

�, defined by (5.4.2) with (5.4.1), follows
by assuming the wavefunction to be of the form (5.1.26). Specifically, ��

q .x/ is
assumed to be the column matrix C1vn�1.�/, C2vn.�/, C3vn�1.�/, C4vn.�/, and
� �0

q0 .x/ is assumed to be the row matrix C 0�
1 vn0�1.�/, C 0�

2 vn0.�/, �C 0�
3 vn0�1.�/,

�C 0�
4 vn0.�/. The integrals follow from (5.4.8), which implies

Z 1

�1
dx e�ikxx

2
664

vn0.� 0/vn.�/
vn0�1.� 0/vn�1.�/
vn0�1.� 0/vn.�/
vn0.� 0/vn�1.�/

3
775 D Dfiei gn�n0

2
664

J nn0�n
J n�1
n0�n

iei J n
n0�n�1

�ie�i J n�1
n0�nC1

3
775 ;

D D .eB/�1=2eikx.�pyC�0p0

y/=2eB ; (5.4.16)
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where the argument of the J -functions is x D k2?=2eB . The factor D is
incorporated into the gauge-dependent factor d�

0�
q0q.k/ in (5.4.2). Explicit evaluation

of the vertex function then gives

� � D c�
n0cn

h
.C 0�
1 C1 C C 0�

3 C3/J
n�1
n0�n C .C 0�

2 C2 C C 0�
4 C4/J

n
n0�n;

.C 0�
1 C4CC 0�

3 C2/ie
i J nn0�n�1C.C 0�

2 C3CC 0�
4 C1/.�ie�i /J n�1

n0�nC1;

�i.C 0�
1 C4CC 0�

3 C2/ie
i J nn0�n�1Ci.C 0�

2 C3CC 0�
4 C1/.�ie�i /J n�1

n0�nC1;

.C 0�
1 C3 C C 0�

3 C1/J
n�1
n0�n � .C 0�

2 C4 C C 0�
4 C2/J

n
n0�n

i
;

c�
n0 D .�ie�i /n0

; cn D .iei /n: (5.4.17)

The general form (5.4.17) may be used to write down explicit forms for the vertex
function for the three choices of spin eigenfunctions discussed in � 5.2. Only the
magnetic-moment eigenfunctions are used explicitly here.

The explicit form for the vertex function for the magnetic-moment eigenstates
(5.2.12) is

Œ� �0�
q0q .k/�

� D .iei /n�n0

�
A
�0�.C/
q0q J

.0/

q0q.k/;

�A�0�.�/
q0q J

.C/
q0q .k/;�iA�

0�.�/
q0q J

.�/
q0q .k/; B

�0�
q0q J

.0/

q0q.k/
�
;

A
�0�.˙/
q0q

D a0
�0s0a�s ˙ a0

��0s0a��s ; B�0�
q0q D a0

�0s0a��s C a0
��0s0a�s ;

J
.0/

q0q
.k/ D b0

s0bsJ
n�1
n0�n.x/C s0sb0

�s0b�sJ nn0�n.x/;

J
.˙/
q0q .k/ D s0b0�s0bse�i J n�1

n0�nC1.x/˙ sb0
s0b�sei J nn0�n�1.x/;

a˙ D P˙
�
"n ˙ "0n
2"n


1=2
; bs D

�
"0n C sm

2"0n


1=2
; (5.4.18)

with P˙ D 1
2
.1C P/˙ 1

2
.1 � P/, P D pz=jpzj introduced in (5.2.13).

Gauge-Invariance Condition

The vertex function in the form (5.4.18) is used widely below, and to illustrate its
properties it is instructive to derive the identity (5.4.6) explicitly, Specifically, the
identity implies

k�Œ�
�0�
q0q .k/�

� D .! � �"q C �0"0
q0/ b

0.�ie�i /n0

iei /n A
�0�.C/
q0q J

.0/

q0q.k/: (5.4.19)
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Noting the implicit relation kz D �pz � �0p0
z, the identity (5.4.19) requires

h
.�"q � �0"0

q0/A
�0�.C/
q0q � .�pz � �0p0

z/B
�0�
q0q

i
J
.0/

q0q.k/

�k?A�
0�.�/
q0q

h
cos J .C/q0q .k/C i sin J .�/q0q .k/

i
D 0: (5.4.20)

The first term in (5.4.20) may be rewritten using a2�s C a2��s D 1, pz D 2"na�sa��s ,
and similarly for the primed variables. One finds the identity

.�"q � �0"0
q0/A

�0�.C/
q0q � .�pz � �0p0

z/B
�0�
q0q D .s"0n � s0"0n0/A

�0�.�/
q0q : (5.4.21)

The second term in (5.4.20) is rewritten using the properties of the J -functions. First
note that the quantity inside the square brackets is independent of  , and equal to
J
.C/
q0q .k/ with  D 0. Next, use the identities (A.1.29) and (A.1.30) to write

k?J n�1
n0�nC1.x/ D pn0J n�1

n0�n.x/ � pnJ
n
n0�n.x/;

k?J nn0�n�1.x/ D �pnJ n�1
n0�n.x/C pn0J nn0�n.x/: (5.4.22)

Using pn D 2"0nbsb�s , and similarly for the primed variables, it is straightforward
to show that second term in (5.4.20) is proportional to J .0/q0q.k/, with the coefficient
equal to minus the right hand side of (5.4.21). This completes the proof.

5.4.4 Sum over Initial and Final Spin States

In many applications one is not interested in the spin of the particles, and it is
appropriate to average over the spin states. The transition rate for any specific
process involving an electron involves the outer product of a vertex function and
its complex conjugate, or a number of such outer products, each of which may be
treated separately. It is useful to write

�
Cn0n.�

0p0
k; �pk; k/

���
2�0�"0

n0"n
D
X
s;s0

�
� �0�
q0q .k/

���
� �0�
q0q .k/

���
; (5.4.23)

with p0�
k D Œ"0

n0 ; 0; 0; p
0
z�, p

�

k D Œ"n; 0; 0; pz�. Given a specific choice of spin
operator, explicit evaluation of the sums in (5.4.23) is straightforward but tedious.
The result is summarized in Table 5.1.
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Table 5.1 The components of
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It is convenient to write the results summarized in Table 5.1 in a covariant form,
involving P�

k D Œ�"n; 0; 0; �pk�, P 0�
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n0; 0; 0; �
0p0

k�. One has

�
Cn0n.P

0
k; Pk; k/

���

D
n
P

0�
k P

�
k C P

�

k P
0�
k � �

.P 0P/k �m2
�
g
��

k
o �
.J n�1
n0�n/2 C .J nn0�n/2

�

� g
��

?
�
.P 0P/k �m2

� �
.J n�1
n0�nC1/

2 C .J nn0�n�1/
2
�

C if ��
�
.P 0P/k �m2

� �
.J n�1
n0�nC1/2 � .J nn0�n�1/2

�

C pn0pn

n
g
��

k 2J n�1
n0�nJ

n
n0�n C .e

�
Ce

�C C e��e��/J n�1
n0�nC1J

n
n0�n�1

o

� pnP
0�
k
�
J n�1
n0�nJ

n
n0�n�1 e

�C C J nn0�nJ
n�1
n0�nC1 e

��
�

� pnP
0�
k
�
J n�1
n0�nJ

n
n0�n�1 e

�� C J nn0�nJ
n�1
n0�nC1 e

�
C
�

� pn0P
�

k
�
J n�1
n0�nJ

n�1
n0�nC1 e

�� C J nn0�nJ
n
n0�n�1 e

�C
�

� pn0P�
k
�
J n�1
n0�nJ

n�1
n0�nC1 e

�
C C J nn0�nJ

n
n0�n�1 e

��
�
; (5.4.24)
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where, for simplicity in writing, the argument xD k2?=2eB of the J -functions
is omitted in (5.4.24). The 4-vectors e

�

˙, whose components are e
�

˙ D
e�i Œ0; 1;˙i; 0�, may be written in the frame-independent form e
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? ˙
ik

�
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G D f ��k� D

k?Œ0;� sin ; cos ; 0�.
The tensor
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���
satisfies a symmetry property that involves

interchanging n and n0. Starting from the explicit form (5.4.24) and making the
replacement n0 $ n involves the following transformations of the J -functions:
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(5.4.25)

It follows by inspection that (5.4.24) satisfies
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(5.4.26)

The tensor
�
Cn0n.P
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also satisfies the identities
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��0
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To establish that the identities (5.4.27) are satisfied for the form (5.4.24) one needs
to use the relations (5.4.22) and P 0�

k � P
�

k C k
�

k D Œ! � �"n C �0"0
n0; 0�.

5.5 Ritus Method and the Vertex Formalism

Three complicating factors in QED for a magnetized system, compared with an un-
magnetized system, are (1) momentum is not conserved at the microscopic level, (2)
the detailed results depend on the choice of the gauge used to describe the magnetic
field, and (3) the detailed theory depends on the choice of spin operator. The fact that
momentum is not conserved precludes a momentum-space representation, which is
an essential ingredient in conventional QED for unmagnetized electrons. In most
applications, the choice of gauge is of no physical relevance: specifically, the choice
of gauge leads to a quantum number (py in the Landau gauge) that partly describes
the location of the center of gyration of the particle, and in a homogeneous system
this location is of no physical relevance. The choice of spin operator is important for
some purposes, but in many applications the spin is of no interest and it is desirable
to have a theory that applies directly to unpolarized particles, as is possible in the
unmagnetized case.
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There are two related formalisms that allow these complications to be partially
overcome, specifically allowing a gauge-independent, momentum-space-like repre-
sentation. These are the vertex formalism, based on the vertex function introduced
in � 5.4, and the Ritus method [11,12]. The idea that underlies the Ritus method is to
isolate the gauge dependence and the dependence of the theory on the choice of the
spin operator from the other dependences. The remaining ‘reduced’ wavefunctions
lead to a ‘reduced’ propagator whose Fourier transform does exist. The theory is
then analogous in structure to the unmagnetized case. In contrast, in the vertex
method all the spatial dependence is associated with a vertex function, rather than
the electron propagator, so that the spatial Fourier transform of the vertex function
exists, with the propagator reduced to a function that depends on the time difference
between two vertices and is independent of the positions of the two vertices.

5.5.1 Factorization of the Dirac Equation

The Dirac wavefunction in a magnetic field may be factorized into a function that
depends on the choice of gauge for the vector potential, A.x/, and a part that is
a gauge-independent Dirac spinor. Such a separation was first introduced by Ritus
[11, 12], cf. also [10]. The gauge-independent part may be further factorized into a
spin-independent part and a Dirac spinor that corresponds to the column matrix
.C1; C2; C3; C4/ introduced in (5.1.26) and (5.1.30). The reduced Dirac spinor,
.C1; C2; C3; C4/, is evaluated for specific spin operators in � 5.2.

Let the Dirac wavefunction be written as the product

��
q .x/ D e�i�."nt�pzz/V�g.x; n; pz/'

�
s .n; pz/; (5.5.1)

where V�g.x; n; pz/ is a diagonal matrix, and where g denotes a gauge-dependent
quantum number. For an arbitrary choice of gauge, the Dirac equation separates
into two equations. One of these is the reduced Dirac equation

Œ=P �
n �m�'�s .n; pz/ D 0;

�
P �
n

�� D .�"n; 0; pn; �pz/; (5.5.2)

where '�s .n; pz/ is a reduced wavefunction. The other equation determines the
diagonal matrix V�g.x; n; pz/ in (5.5.1). This equation depends explicitly on the
choice of gauge for A. For an arbitrary gauge this equation is

�
˛x

�
�i @
@x

C eAx



C ˛y

�
�i @
@y

C eAy


�
V�g.x; n; pz/ D pn˛yV�g.x; n; pz/;

(5.5.3)

with pn D .2neB/1=2. The two Eqs. (5.5.2) and (5.5.3) are discussed separately
below, starting with the gauge-dependent part.



232 5 Magnetized Dirac Electron

Gauge-Dependent Part of the Wavefunction

After multiplying by ˛y , (5.5.3) becomes
�
�i˙z

�
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@x

C eAx
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�

�i @
@y

C eAy


�
V�g.x; n; pz/ D pnV�g.x; n; pz/:

(5.5.4)

In the Landau gauge, (5.1.12), the gauge-dependent quantum number corresponds
to g ! �py . One seeks a solution of the form V�g.x; n; pz/ / ei�pyy . Noting that the
solution (5.1.26) may be written in the form

f .x/ D

0
BB@

C1vn�1.�/
C2vn.�/

C3vn�1.�/
C4vn.�/

1
CCA D

0
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0 vn.�/ 0 0

0 0 vn�1.�/ 0

0 0 0 vn.�/

1
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0
BB@

C1

C2
C3
C4

1
CCA ; (5.5.5)

one identifies the column matrix .C1; C2; C3; C4/ with '�s .n; pz/ in (5.5.1). This
leads to the identification

V�g.x; n; pz/ D ei�pyy

0
BB@

vn�1.�/ 0 0 0

0 vn.�/ 0 0

0 0 vn�1.�/ 0

0 0 0 vn.�/

1
CCA : (5.5.6)

For some purposes it is more convenient to write (5.5.6) in the form

V�g.x; n; pz/ D ei�pyy
�
PCvn�1.�/C P�vn.�/

�
; P˙ D 1

2
.1˙˙z/: (5.5.7)

The spin projection operators, P˙, are introduced in (5.3.7), and their properties are
summarized in (5.3.27), (5.3.28), and (5.3.30).

The result corresponding to (5.5.6) for the cylindrical gauge is

V�r .x; n; pz/ D ei.n�r/	Ci�pzz

�

0
BB@

J rn�r�1e�i	=2 0 0 0

0 J rn�r ei	=2 0 0

0 0 J rn�r�1e�i	=2 0

0 0 0 J rn�r ei	=2

1
CCA ; (5.5.8)

where the argument 1
2
eB$2 of the J -functions is omitted for simplicity in writing.

In this case the additional quantum number, g ! r , is the radial quantum number
(5.2.26), which is discrete.

For an arbitrary choice of gauge, V�g.x; n; pz/ satisfies orthogonality and com-
pleteness relations,
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Z
d3x V��g0 .x; n

0; p0
z/V�g.x; n; pz/ D 2


Lz
ı.p0

z � pz/ ın0n ıg0g; (5.5.9)

Lz

X
g;n

Z
dpz

2

V�g.x0; n; pz/V��g .x; n; pz/ D ı3.x0 � x/: (5.5.10)

The sum over g becomes the integral over Ly dpy=2
 for the Landau gauge and a
sum over the radial quantum number for the cylindrical gauge.

5.5.2 Reduced Wavefunctions

The reduced Dirac equation (5.5.2) follows from the Dirac equation and the identity
(5.5.4). The resulting equation for the coefficients C1; : : : ; C4 is

0
BB@

�"n �m 0 ��pz ipn

0 �"n �m �ipn �pz
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CCA D 0: (5.5.11)

The square matrix in (5.5.11) may be written in the form �"n � �˛zpz �˛ypn �ˇm,
and after multiplying by ˇ D �0, this may be written in the more concise form .=P �

n �
m/'�s .n; pz/ D 0, reproducing (5.5.2) with the reduced wavefunction identified as

'�s .n; pz/ D

0
BB@

C1

C2
C3
C4

1
CCA : (5.5.12)

The specific form for the reduced wavefunction (5.5.12) depends on the choice
of spin operator. For the Johnson-Lippmann wavefunctions it is given by (5.1.30),
for the helicity eigenstates it is given by (5.2.7), and for the magnetic-moment
eigenstates it is given by (5.2.12). In particular, the eigenvalue equation for the
reduced magnetic-moment wavefunction is

Œm˙ � i�γ � …�
n.pz/�z'

�
s .n; pz/ D s�'�s .n; pz/; (5.5.13)

with, in the standard representation,
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n.pz/�z D
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0 ipn m 0

ipn 0 0 �m

1
CCA ; …�

n.pz/ D .0; �pn; pz/:

(5.5.14)
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Solving (5.5.13) with (5.5.14) reproduces (5.2.12).
The normalization for the reduced wavefunctions is closely analogous to the

normalization for (unmagnetized) free particles. Specifically, one has

'��s .n; pz/ '
�0

s0 .n; pz/ D ı��
0

ıss0

V
; N'�s .n; pz/ '

�0

s0 .n; pz/ D mı��
0

ıss0

�"nV
: (5.5.15)

When summing over intermediate states, or summing or averaging over initial or
final polarization states for an electron (or positron), the sum is over the outer
product of a wavefunction and its Dirac conjugate. This sum gives

X
sD˙

'�s .n; pz/ N'�s .n; pz/ D =P �
n Cm
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; (5.5.16)

with
�
P �
n

�� D .�"n; 0; pn; �pz/, and with, analogous to (5.5.11),
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(5.5.17)

In the magnetized case, the operator =P �
n C m plays a role somewhat analogous to

�=p Cm in the unmagnetized case.

5.5.3 Reduced Propagator in the Ritus Method

Although the electron propagator has no momentum-space representation in a
magnetic field, the Ritus method leads to a reduced propagator that plays a similar
role to a momentum-space propagator. The absence of a formal momentum-
space propagator is due to the coordinate-space form of the propagator depending
separately on the space-time points, x; x0, and the Fourier transform can be
performed only for functions that depend on x � x0, rather than on x; x0 separately.
In a magnetized vacuum, the form (5.3.8) for the propagator shows that it may be
separated into a gauge-dependent function, 	.x; x0/, times a reduced propagator
that depends only on the difference x � x0, which can be Fourier transformed.

Using the Ritus method, a momentum-space representation for the statistically
averaged electron propagator is possible provided that the electrons are unpolarized.
On factorizing the wavefunctions in (5.3.1) using (5.5.1), one has

��
q .x/�;

�
q .x

0/ D ei�pzzV�g.x; n; pz/'
�
s .n; pz/ N'�s .n; pz/V��g .x0; n; pz/ e

�i�pzz0

:

(5.5.18)
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In the Ritus method, the factors ei�pzzV�g.x; n; pz/ and V��g .x0; n; pz/ e
�i�pzz0

are
treated separately. The remaining factors, '�s .n; pz/ N'�s .n; pz/, are incorporated into
a reduced propagator, NGq.E/, which is defined by writing (5.3.1) with (5.5.18) in
the form

NG.x; x0/ D
X
�q

1

V

Z
dE

2

e�iE.t�t 0/

� ei�pzzV�g.x; n; pz/ NGq.E/V��g .x0; n; pz/ e
�i�pzz0

: (5.5.19)

The reduced propagator is identified as

NG�
q.E/ D

X
s

'�s .n; pz/ N'�s .n; pz/

�
1 � n�q

E � �."q � i0/ C n�q

E � �."q C i0/

�
: (5.5.20)

The factorization process is useful only if the reduced propagator is independent of
the choice of spin operator, and this requires that the electrons be unpolarized. Then
the spin appears only in '�s .n; pz/ N'�s .n; pz/, and the sum over s is performed using
(5.5.15). The propagator in the Ritus formalism, rewritten NG�

q.E/ ! NG�
n.E; pz/,

becomes

NG�
n.E; pz/ D =P �

n Cm

2�"n

�
1 � n�n.�pz/

E � �."n � i0/ C n�n.�pz/

E � �."n C i0/

�
; (5.5.21)

with
�
P �
n

�� D .�"n.pz/; 0; pn; �pz/. The reduced propagator, NG�
n.E; pz/, depends

only on the quantum numbers �, n, pz and the energyE in the internal particle line.

5.5.4 Propagator in the Vertex Formalism

In contrast with the Ritus method, where the reduced wavefunctions are retained
in the reduced electron propagator, in the vertex formalism the propagator is
independent of the details of the states, and depends only on the (virtual) energy
of the electron (or positron). Specifically, let G�q.E/ be the propagator in the

vertex formalism in the absence of any statistical average, and let NG�q.E/ be the
statistical average of this propagator. Starting from the propagator NG.x; x0/, given
by (5.3.1), the wavefunctions ��

q .x/, �
�
q.x

0/ are deleted (and transferred to the
vertex functions) so that the propagator becomes

NG.x; x0/ D
X
�q

��
q .x/�

�
q.x

0/
Z
dE

2

e�iE.t�t 0/ NG�q.E/; (5.5.22)
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In the absence of any statistical average one identifies

G�q.E/ D 1

E � �."q � i0/
; (5.5.23)

where q denotes the quantum numbers for the electron in the intermediate state,
with only n; pz relevant to the energy "q ! "n.pz/. The statistical average over
unpolarized particles, with q identified as n; pz, gives

NG�n.E; pz/ D 1 � n�n.�pz/

E � �."n.pz/� i0/
C n�n.�pz/

E � �."n.pz/C i0/
: (5.5.24)

Comparison of (5.5.20) and (5.5.21) with (5.5.23) and (5.5.24) shows that the
propagator in the vertex formalism corresponds to deleting the factor Œ=P �

n Cm�=2�"n
associated with the sum over the spins of the outer product to the reduced
wavefunctions in the reduced propagator. In the vertex formalism, the reduced
wavefunctions are included in the vertex functions, and not in the propagators.

5.5.5 Vertex Matrix in the Ritus Method

The vertex function Œ��
0�
q0q.k/�

� factorizes into gauge-dependent and a gauge-

independent parts, Œ� �0�
q0q .k/�

�, as shown explicitly in (5.4.2). In the Ritus method,
a further factorization of the gauge-independent vertex function facilitates a
momentum-space-like representation of the theory [10–12]. This factorization
allows one to separate the reduced wavefunctions from Œ� �0�

q0q .k/�
�. The remaining

quantity is a Dirac matrix, which is the vertex matrix in the Ritus method.
The factorization of the wavefunction, in the form (5.5.1), allows one to make

the factorization (5.4.1) of the vertex function explicit by writing

Œ� �0�
q0q .k/�

� D V N'�0

s0 .n
0; p0

z/J
�

n0n.k?/ '�s .n; pz/; (5.5.25)

which defines the vertex matrix J �

n0n
.k?/. For example, the form (5.4.17) for

the vertex function for an arbitrary choice of spin operator may be written in
the form (5.5.25) by identifying the reduced wavefunction as the column matrix
.C1; C2; C3; C4/ and the adjoint wavefunction as .C 0�

1 ; C
0�
2 ;�C 0�

3 ;�C 0�
4 /.

In writing down an explicit form for J �

n0n
.k?/ it is useful to project onto the k

and ?-subspaces, by writing ��k D g
��

k �� , �
�

? D g
��

? �� , so that these correspond to

�
�

k D .�0; 0; 0; �3/, ��? D .0; �1; �2; 0/. One has

J �

n0n.k?/ D �
�

k J
k
n0n.k?/C �

�

?J
?
n0n.k?/; (5.5.26)
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where J k
n0n.k?/, J ?

n0n.k?/ are diagonal 4 � 4 matrices:

J k
n0n.k?/ D .�ie�i /n0�n

0
BB@

J n�1
n0�n 0 0 0

0 J n
n0�n 0 0

0 0 J n�1
n0�n 0

0 0 0 J nn0�n

1
CCA ; (5.5.27)

J ?
n0n.k?/ D .�ie�i /n0�n

�

0
BB@

�ie�i J n�1
n0�nC1 0 0 0

0 iei J nn0�n�1 0 0

0 0 �ie�i J n�1
n0�nC1 0

0 0 0 iei J nn0�n�1

1
CCA ;

(5.5.28)

where the arguments of the J -functions is k2?=2eB .

The matrices ��k , J k
n0n.k?/ commute, but the matrices ��?, J ?

n0n.k?/ do not
commute. If one writes the matrix products in (5.5.26) in the opposite order, one
needs to replace J ?

n0n.k?/ by

QJ ?
n0n.k?/ D .�ie�i /n0�n

�

0
BB@

iei J nn0�n�1 0 0 0

0 �ie�i J n�1
n0�nC1 0 0

0 0 iei J nn0�n�1 0

0 0 0 �ie�i J n�1
n0�nC1

1
CCA :

(5.5.29)

The matrix (5.5.29) also appears in the symmetry relations

J k
nn0.�k?/ D �

J k
n0n.k?/

��
; J ?

nn0.�k?/ D � QJ ?
n0n.k?/

��
: (5.5.30)

Using the relations (5.5.30) in (5.5.26), one finds

J �

nn0.�k?/ D �
�

k
�
J k
n0n.k?/

�� C �
�

?
� QJ ?

n0n.k?/
��
: (5.5.31)

An alternative way of writing J �

n0n.k?/ is in terms of the projection matrices P˙
introduced in (5.5.7). One has

J �

n0n.k?/ D .�ie�i /n0�n
n
�
�

k
h
J n�1
n0�n.x/PC C J nn0�n.x/P�

i

C��?
h

� ie�i J n�1
n0�nC1.x/PC C iei J nn0�n�1.x/P�

io
: (5.5.32)
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These matrices satisfy the identities

P˙��k D �
�

k P˙; P˙��? D �
�

?P�: (5.5.33)

Using these relations, an alternative form of (5.5.32), with the matrix products
written in the opposite order, is

J �

n0n.k?/ D .�ie�i /n0�n˚�J n�1
n0�n.x/PC C J nn0�n.x/P�

�
�
�

k

C� � ie�i J n�1
n0�nC1.x/P� C iei J nn0�n�1.x/PC

�
�
�

?
�
: (5.5.34)

5.5.6 Calculation of Traces Using the Ritus Method

An example where the Ritus method may be used is in an alternative derivation in
the sum (5.4.23), leading to the quantity

�
C �0�
n0n
.pz;k/

���
, defined by (5.4.23) as the

sum over spins of the outer product of the vertex function with itself. The Ritus
method gives

�
C �0�
n0n.pz;k/

��� D Tr

"
=P �0

n0 Cm

2�0"0
n0

J �
n0n.k?/

=P �
n Cm

2�"n
J �

nn0.�k?/
#
; (5.5.35)

with
�
P �0

n0

�� D Œ�0"0
n0; 0; pn0 ; �0p0

z�, "
0
n0 D "n0.p0

z/, and similarly for the unprimed
quantity

�
P �
n

��
. The evaluation of (5.5.35) is analogous to the corresponding

unmagnetized case, where one needs to evaluate the trace of the product .�=p C
m/��.�0=p0 C m/�� . However, new features appear associated with the projection
operators, and in order to calculate (5.5.35), the general problem of evaluating traces
that include P˙ needs to be addressed.

In the absence of projection operators, the standard technique for calculating
traces of products of Dirac matrices is based on the identities

Tr
�
����

� D 4g��; Tr
�
��������

� D 4
�
g��g�� � g��g�� C g��g��

�
;

(5.5.36)

together with the trace of any product of an odd number of � -matrices being zero.
One way of deriving (5.5.36) involves choosing 16 independent matrices to span
the Dirac spin space, for example 1, ��, Œ��; ���, �5��, �5, and noting that only the
unit matrix has a nonzero trace, equal to 4. If one includes a projection operator
anywhere in the sequence of � -matrices, this projects the unit matrix onto a 2-
dimensional subspace, so that the trace of the unit matrix is reduced to 2. This
reduces the value of the traces in (5.5.36) by one half. However, the projection
introduces a second matrix with a nonzero trace: ˙z has zero trace, but P˙˙z D
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˙P˙ has trace ˙2. With �1�2 D �i˙z D ��2�1, this introduces an additional
contribution whenever two of the indices in (5.5.36) take on the values 1 and 2.
It is useful to distinguish between k- and ?-components, achieved here by writing
�
�

k D Œ�0; 0; 0; �3�, ��? D Œ0; �1; �2; 0�. Including a projection operator in the first
of (5.5.36) gives

Tr
h
�
�

k �
�
kP˙

i
D 2g

��

k ; Tr
�
�
�

?�
�?P˙

� D 2
�
g
��

? ˙ if ���; (5.5.37)

with f �� , defined by (1.1.16) in terms of the Maxwell tensor for the background
magnetic field, having nonzero components f 12 D �f 21 D �1. An alternative
expression is

Tr
�
�
�

?�
�
?P˙

� D �2e��e�˙; e
�

˙ D e�i .0; 1;˙i; 0/: (5.5.38)

The second of (5.5.36) becomes

Tr
�
��������P˙

� D 2
�
g��g�� � g��g�� C g��g��

�˙ 2i
�
g��f �� C f ��g��

�g��f �� � f ��g�� C g��f �� C f ��g��
�
: (5.5.39)

The projection operator may be moved to any other location, using the commutation
relations P˙Mk D MkP˙, with Mk D �0 or �3, or P˙M? D M?P�, with M? D
�1 or �2.

The evaluation of
�
C �0�
n0n.pz;k/

���
, given by (5.5.35), involves using the Ritus

method to evaluate the trace in (5.5.35). The result reproduces (5.4.24).

5.6 Feynman Rules for QPD in a Magnetized Plasma

Rules for treating QED processes in a uniformly magnetized plasma are formulated
in this section. First, the rules for the unmagnetized case are summarized.

5.6.1 Rules for an Unmagnetized System

The rules for the unmagnetized case are formulated in � 7.1 of volume 1.
The rules for Feynman diagrams are:

1. The initial state is to the right of the diagram and the final state is to the left. For
a given process (specified initial and final states) all diagrams with the specified
number and kind of particles and wave quanta in the initial and final states are
to be drawn.
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2. An electron is represented by a solid line with an arrow pointing from right to
left and a positron is represented by a solid line with an arrow pointing from
left to right. The direction of the arrow along a solid line is continuous.

3. A photon (any wave quantum) is represented by a dashed line.
4. An electron and a photon line join at an electron-photon vertex, which has a

4-tensor index (�; �; : : :) and a space-time point associated with it.
5. The nth order nonlinear response of the medium is represented by an .nC 1/-

photon vertex, which is a circle with nC 1 photon lines joining onto it.
6. Any photon line begins or terminates at a vertex, either joining an electron-

positron line at electron-photon vertex, or a m-photon vertex.
7. An m-photon vertex represents a statistical average over an m-sided closed

particle loop, and closed particle loops are omitted in diagrams in QPD so that
their effect is not counted twice.

8. The order of a diagram is equal to the number of its vertices in the absence of
m-photon vertices. An m-photon vertex contributesm � 2 to the order.

9. For diagrams in momentum space all lines are labeled with the 4-momentum of
the particles, rather than the vertices being labeled with the space-time points.
Four-momentum is conserved at a vertex.

10. The integral d4P=.2
/4 over any undetermined 4-momentum, P , in a closed
loop or associated with an external field A�.P / is to be performed.

11. An interaction with an external field is described by a vertex with the photon
line replaced by a squiggly line joined to an “x” that denotes the source of the
external field.

In the generalization to the magnetized case, the plane wavefunction for a free
electron in the unmagnetized plasma, is replaced by the wavefunction for an electron
in a magnetostatic field found by solving the Dirac equation exactly. For a free
particle, the only relevant quantum numbers are the 4-momentum P� D Œ�"; �p�

and the spin s, and for a magnetized electrons the set of quantum numbers includes
n; pz; �; s plus a gauge-dependent quantum number (py or r here).

The rules for constructing Sfi in coordinate space are essentially unchanged from
the unmagnetized case, as given in � 7.1 of volume 1.

Rule 1

The contributions from all diagrams with the specified number and kind of initial
and final particles are to be added in determining Sfi.

Rule 2

Each electron-photon vertex corresponds to a factor ie ��, where � is the 4-tensor
index associated with the vertex. The integrals are to be performed over the space-
time coordinates associated with each vertex.
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Rule 3

An incoming electron line corresponds to � C
q .x/ e

�i"q t , and incoming positron line

to �
�
q .x/ e

�i"qt , an outgoing electron line to � C
q .x/ e

i"qt , and an outgoing positron

line to �
�
q .x/ e

i"qt , where q denotes the quantum numbers.

Rule 4

An incoming photon line in the mode M , joining at a vertex labeled (x; �),
corresponds to a factor aM e

�
M e

�ikM x , with aM D Œ�0RM=V!M�
1=2, and an

outgoing photon line to aM e
��
M eikMx . In an interaction with an external fieldA�.x/,

a factor A�.x/ is included in place of these photon factors.

Rule 5

An internal electron-positron line pointing from x1 to x2 corresponds to the
propagator iG.x2; x1/. An internal photon line between vertices (x1; �) and (x2; �)
corresponds to the propagator �iD��.x2 � x1/.

Rule 6

The Dirac spinors are written according to matrix multiplication along the direction
opposite to the arrow along each solid line. An extra minus sign is to be included
for each closed electron-positron loop. The overall phase of the amplitude is
unimportant, but two diagrams that differ only by the interchange of two external
electron-positron lines must have opposite signs.

Rule 7

An m-photon vertex corresponds to a factor

� i

m

Z
d4x0 � � �d4xm�1

Z
d4k0

.2
/4
� � � d

4km�1
.2
/4

ei.k0x0C���Ckm�1xm�1/

� .2
/4 ı4.k0 C � � � C km�1/˘.m�1/�0:::�m�1 .k0; : : : ; km�1/: (5.6.1)

Neglect of Gauge-Dependent Factors

A formal complication in the magnetized case is the gauge-dependent factor
d�

0�
q0q.K / in Sfi associated with each electron line in a Feynman diagram, where
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q; q0 correspond to the initial and final states of the electron, and where K is the
net momentum transfer along the line. This factor appears squared in the transition
rate / jSfij2. In the Landau gauge, the y- and z-components of 3-momentum
are conserved at each vertex, and hence between the initial and final states. In
the factor d�

0�
q0q.K /, conservation of y-momentum is expressed through the factor

2
ı.�py � �0p0
y �Ky/. After squaring, one has

jd�0�
q0q.K /j2 D LyLz

V 2eB
2
ı.�py � �0p0

y �Ky/ 2
ı.�pz � �0p0
z �Kz/: (5.6.2)

For an electron line that connects an electron in the initial (unprimed) state
to an electron in the final (primed) state, the density of final states factor is
LyLzdp

0
ydp

0
z=.2
/

2. The p0
y- and p0

z-integral may be performed over the ı-
functions in (5.6.2). The resulting factor is .LyLz/

2=V 2eB D 1=L2xeB , which is
equal to unity for the choice Lx D 1=.eB/1=2. It follows that the factor jd�0�

q0q
.K /j2

may be replaced by unity, provided that it is implicit that the y- and z-components
of momentum are conserved. Provided that one is not interested in the change in
the position of the gyrocenter, one may simply ignore the gauge-dependent factor
by replacing jd�0�

q0q
.K /j2 by unity. However, this also discards information on the z-

component of momentum, and it is usually appropriate to retain information on the
z-component of momentum explicitly. This is achieved by replacing (5.6.2) and the
density of final states factor for the line by

j Nd�0�
q0q.K /j2 D 2


VeB
2
ı.�pz � �0p0

z �Kz/; NDf D eBV

2


Z
dp0

z

2

; (5.6.3)

respectively.
The foregoing argument applies to an electron line connecting an electron in the

initial state to an electrons in the final state, and the other possibilities for a single
electron line may be treated in a similar manner. For a positron (� D �0 D �1) line,
the foregoing argument applies with primed and unprimed quantities interchanged.
For an electron line corresponding to a pair in the initial state, the density of final
states is NDf D 1. For an electron line corresponding to a pair in the final state,
Kz is specified by the initial conditions, and the density of final states factor is
NDf D .eBV=2
/2

R
dpz=2


R
dp0

z=2
.
When there are two or more electron lines, the result (5.6.3) applies separately to

each line. For example, consider Møller scattering, where there are two electrons in
the initial state, and two electrons in the final state. In the absence of a magnetic field,
the details of the scattering depend on the relative positions of the two particles;
for example, the scattering angle increases as the distance of closest approach
decreases. Nevertheless, in a momentum-space description, the relative position is
not specified: the momentum transfer is a free parameter, and it determines both
the scattering angle and the distance of closest approach. Thus, the relative position
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of the scattering particles is not specified independently, but is determined by the
theory itself. Similarly, although the relative position of the gyrocenters affects
the scattering, in the momentum-space-like description, this relative position is
determined by other parameters and does not need to be specified independently.

5.6.2 Modified Rules for Magnetized Systems

Modified rules for processes in a magnetic field are as follows:
The differential transition rate in the S -matrix formalism is given by

wi!f D lim
T!1

jSfij2
T

Y
f

Df; (5.6.4)

where T is the normalization time. In the case of an unmagnetized system,
4-momentum is conserved, and it is conventional to write the scattering matrix as
Sfi D ıfi C i.2
/4 ı4.pf �pi/ Tfi. In a magnetic field, perpendicular 3-momentum is
not conserved and this procedure cannot be used. Energy (and parallel momentum)
is conserved in a magnetostatic field, and one may incorporate this into the theory
by writing the S -matrix element in the form

Sfi D ıfi C i 2
 ı.Ef � Ei/ Tfi; (5.6.5)

whereEi,Ef are the energies of the initial and final states, respectively. On inserting
(5.6.5) into (5.6.4), the square of ı.Ef � Ei/ gives T 2
ı.Ef � Ei/, and the factor
of T cancels with that in the transition rate (5.6.4). This leads to the following rule.

Rule 8a

With Tfi defined by (5.6.5), the transition probability per unit time is given by

wi!f D 2
 ı.Ef � Ei/ jTfij2
Y

f

Df: (5.6.6)

When one is not interested in the locations of the gyrocenters, the gauge-
dependent factors are ignored: jd�0�

q0q.K /j2 and the density of states factor are
replaced according to (5.6.3). In the following, this replacement is assumed to be
made and the overbar is omitted on Df. It is often convenient to assume that the
integral over the ı-function is performed, so that �0p0

z D �pz �Kz is implicit. This
leads to the following rule.
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Rule 8b

For each electron line, iTfi contains a product of Dirac matrices, with Œ� �0�
q0q .k/�

�

associated with a vertex with 4-tensor index �, between states �; q and �0; q0, and
with k the 3-momentum emitted. The set q represents the quantum numbers n; s; pz,
and the sum over these quantum numbers is performed for each internal electron
line.

Rule 8c

For an incoming photon line, iTfi contains a factor aM D Œ�0RM=V!M �
1=2 and a

polarization vector e�M , for a photon in the mode M at a vertex with 4-tensor index
�. For each outgoing photon line, Tfi contains a factor aM e

��
M .

Rule 9a

In the vertex formalism the matrix element of the product of Dirac matrices,
representing vertices and propagators, along an electron line is replaced by a product
of vertex functions, of the form ieŒ� �0�

q0q .k/�
�, and reduced propagators. The vertex

functions are matrix elements that are independent of the Dirac algebra. An internal
electron line is represented by a factor iG�q.E/, with the reduced propagator given by

G�q.E/ D 1

E � �."n � i0/
; (5.6.7)

with "n D .m2 C p2z C 2neB/1=2. After statistical averaging, and with a minor
change in notation, the propagator (5.6.7) becomes

NG�n.E; pz/ D 1 � n�n.�pz/

E � �."n � i0/ C n�n.�pz/

E � �."n C i0/

D ℘ 1

E � �"n � i�Œ1 � 2n�n.�pz/�
ı.E � �"n/; (5.6.8)

where ℘ denoted the Cauchy principal value. The reduced propagator is a scalar
that is also independent of the Dirac algebra. In the vertex formalism, the order in
which the functions are written is unimportant, although for bookkeeping purposes
it is usually convenient to follow the order in which the functions appear along the
electron line.

One integrates,
R
dE=2
 , over any undetermined energy,E , in a closed loop.
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Rule 9b

The Ritus method differs from the vertex formalism in that the reduced wavefunc-
tions, '�s .n; pz/, are associated with the propagators rather than the vertex functions.
A vertex between unprimed and primed electron states is represented by a factor
J �

n0n.k?/, which is defined such that its matrix element with respect to the reduced
wavefunctions is Œ� �0�

q0q .k/�
�, as written down in (5.5.25). An internal electron line

is represented by a factor iG�n.E; pz/, which involves the sum over spin states of
the outer product of the reduced wavefunction and its Dirac conjugate. This sum is
performed using (5.5.15), giving

G�n.E; pz/ D =P �
n Cm

2�"n

1

E � �."n � i0/
; (5.6.9)

with
�
P �
n

�� D .�"n; 0; pn; �pz/. When a statistical average is performed, (5.5.23) is
replaced by

NG�
n.E; pz/ D =P �

n Cm

2�"n

�
1 � n�n.�pz/

E � �."n � i0/ C n�n.�pz/

E � �."n C i0/

�
; (5.6.10)

where the occupation number, n�n.�pz/, is assumed independent of the choice of spin
operator.

Rule 10

An internal photon line corresponds to a factor �iD��.k/. Explicit forms for
the photon propagator D��.k/ are gauge-dependent. For a medium with linear
response 4-tensor ˘��.k/, the propagator in the G-gauge, with gauge condition
G� A

�.k/D 0, is

D��.k/ D �0
G˛Gˇ

.Gk/2
��˛�ˇ.k/

�.k/
; (5.6.11)

where �.k/k�k� and ����� .k/ are the first and second order, respectively, matrices
of cofactors of���.k/ D k2g�� �k�k� C�0 ˘

��.k/. The temporal, Coulomb and
Lorenz gauges correspond to G� D Œ1; 0�, G� D Œ0;k� and G� D k�, respectively.

5.6.3 Probability of Transition

Any specific process may be described in terms of a probability of transition,
which is defined such that crossing symmetries are built into it. For an emission
process, the probability of transition is the probability of spontaneous emission,
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which is identical to the probability of stimulated emission and the probability
of true absorption, so that detailed balance applies trivially. The probabilities for
crossed processes to emission, including one-photon pair creation and decay, are
obtained from the probability of emission by changing the sign of the appropriate 4-
momenta, and it is convenient to include the signs explicitly in the probability. Two
other features of the probability are that it is defined (a) such that it is independent
of the normalization volume, V , and (b) such that conservation of 3-momentum is
implicit, whereas conservation of energy is explicit in a ı-function. The probability
of transition is identified from a QPD calculation by identifying the differential rate
per unit time, wi!f, for the process with the same quantity expressed in terms of the
probability of transition.

Let w�
0�
q0q.k/, with �0 D � D 1, denote the probability of spontaneous emission

of a photon in the mode M in the range d3k=.2
/3 by an electron in an initial
state q, with transition to a final state q0. The differential rate of transition is
wCC
q0q
.k/ d 3k=.2
/3 which is identified with the transition rate, wi!f, for the

emission process calculated using the QPD rules in order to identify wCC
q0q .k/.

For emission by an electron, the density of final states factor is the product
of Vd3k=.2
/3 for the photon, and .VeB=2
/.dp0

z=2
/ for the final electron.
Conservation of (the z-component of ) momentum is explicit in the transition
rate, wi!f, through a ı-function, specifically, .2
=VeB/ 2
ı.p0

z � pz C kz/ here.
Conservation of parallel momentum is implicit in the probability of transition, and
this is achieved by noting that this factor in the transition rate combines with the sum
over the final states, through the factor .VeB=2
/.dp0

z=2
/ for the final electron, to
give unity, specifically,

VeB

2


Z
dp0

z

2


2
ı.p0
z � pz C kz/

VeB
D 1:

Both factors are omitted in the probability. The rules for the transition rate in QPD
then imply the probability of transition

w�
0�
Mqq0 .k/ D V jaM.k/ Tfij22
 ı.�0"q0 � �"q C !M /; (5.6.12)

with �0 D � D 1. The probability is such that it does not depend on the
normalization volume, V , due to the explicit power of V (from the density of final
states factor Vd3k=.2
/3) canceling with a factor 1=V in jaM .k/j2. This implies
that, in ordinary units, the probability of emission has the dimensions L3T �1, so
that w�

0�
Mqq0.k/d

3k=.2
/3 has the dimensions T �1.
The transition rate calculated in QPD assumes a given initial electron, so that it

corresponds to the rate of emission of photons by the electron. For a distribution
of initial electrons, the relevant quantity of interest is the rate the distribution of
electrons emits photons per unit volume. This rate per unit volume is found by
multiplying the transition rate per electron by .eB=2
/.dpz=2
/nq , and integrating
over pz. The result may be used to identify the probability averaged over the initial
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distribution of electrons; this averaged probability is wCC
Mqq0.k/n

C
q . In the second

quantization formalism (� 8.2 of volume 1), the occupation number nC
q arises from

a statistical average of the outer product of the creation and annihilation operators,
OaC�
q OaC

q , and the statistical average of the operators in the opposite order, OaC
q OaC�

q ,
gives 1 � nC

q for fermions. The latter is relevant to the effect of electrons in
the final state, which suppress the emission due to the Pauli exclusion principle.
Similarly, the presence of photons in the final state gives a statistical contribution
1CNM.k/, where the unit term is attributed to spontaneous emission and the other
term is interpreted as stimulated emission. The total probability of emission, after
statistically averaging over the electrons and photons, is

wCC
Mqq0 .k/n

C
q

�
1 � nC

q0

	
Œ1CNM.k/�:

Detailed balance requires that the probability (5.6.12) also apply to the absorption
process, in the sense that the probability of true absorption is equal to the probability
of spontaneous emission times the occupation number, NM.k/, of the photons. In
the absorption process, an electron in the initial state q0 absorbs a photon with
frequency !M.k/, with transition to the final state q. The matrix element Tfi for
this process is the complex conjugate of that for the emission process, and hence the
differential rate per unit time, wi!f, for the absorption process differs from that for
the emission process only through the density of final states. For the absorption
process there is only one density of final states factor, .VeB=2
/.dpz=2
/ for
the final electron. As for spontaneous emission, the integral over this factor
combines with the ı-function that expresses momentum conservation, specifically
.2
=VeB/ 2
ı.p0

z � pz C kz/, and neither appears explicitly in the probability. In
the transition rate, wi!f, it is implicit that there is a single photon in the initial
state. The absorption rate for a distribution of photons is found by multiplying by
ŒVd3k=.2
/3�NM.k/ and integrating. To identify the probability of true absorption
one equates this absorption rate to the probability times NM.k/d 3k=.2
/3. The
resulting expression for this probability of absorption is identical to the probability
of spontaneous emission, (5.6.12) with �0 D � D 1, confirming that detailed balance
is built into the theory.

The statistical average over a distribution of electrons and photons gives the
averaged probability of true absorption as

wCC
Mqq0.k/n

C
q0.1 � nC

q /NM.k/:

Kinetic equations for the photons and electrons are written down in � 6.1.3 using
these statistically averaged probabilities.

The probability of spontaneous emission by a positron is found from the
expression (5.6.12) by setting �0 D � D �1. In this case the role of the initial
and final states is interchanged, such that q0 is interpreted as the initial state, and
q is interpreted as the final state. The other processes described by the probability
(5.6.12) have �0 D �� D ˙1 and correspond to one photon pair creation and
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annihilation. For pair annihilation, the differential transition rate, wi!f, is for a
given electron and a given positron in the initial state and in order to identify the
probability of pair annihilation one includes distributions of electrons and positrons.
The differential transition rate per unit volume is found from the transition rate for a
single initial pair by multiplying by a factor .eB=2
/.dpz=2
/n

C
q for the electrons

and a factor .eB=2
/.dp0
z=2
/n

�
q0 for the positrons, in addition to the density

of final states factor Vd3k=.2
/3, times 1 C NM.k/ to take account of induced
emission. The probability of pair annihilation so identified is given by (5.6.12) with
� D C1; �0 D �1.

The only other first order processes in QPD are photon splitting and the cross
process of coalescence of two photons into one. The probability of these processes
is the same as in the unmagnetized case, which is also the same as in a semi-classical
treatment. The properties of the wave modes and the detailed expression for the
quadratic and cubic response tensors are affected by the presence of the magnetic
field, but otherwise the QPD theory of processes involving only photons is the same
as the semi-classical theory for wave-wave interactions.

5.6.4 Probabilities for Second-Order Processes

Second order processes involve four external lines, and these are either two
electron lines and two photon lines, four electron lines or four photon lines.
Processes with two electron lines and two photon lines correspond to Compton
scattering and related crossed processes, including double emission and two-photon
pair creation and annihilation. Processes involving four electron lines, correspond
to electron–electron scattering and related crossed processes, including electron
positron scattering and the trident process (emission of a pair by and electron).
Processes involving four photon lines correspond to photon-photon scattering and
related crossed processes, and the QPD theory is equivalent to the semi-classical
theory for such processes.

The argument leading to the identification of the probability of Compton
scattering is closely analogous to the argument leading to the expression (5.6.12) for
the probability of spontaneous emission. Given the matrix element Tfi for Compton
scattering, the probability is

w�
0�
MM 0qq0.k;k

0/ D V 2jaM.k/ aM 0.k0/ Tfij22
 ı.�0"q0 ��"qC!M �!M 0/; (5.6.13)

with �0 D � D C1 and where the labels M 0;M denote the modes of the
unscattered and scattered photons, respectively. The factor V 2 cancels with factors
1=V in jaM.k/j2 and jaM 0.k0/j2, such that the probability is independent of V .
Conservation of (the z-component of) 3-momentum is implicit. In ordinary units,
the probability of Compton scattering has the dimensions L6T �1.
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For electron-electron scattering, with the initial states labeled q1; q2 and final
states labeled q0

1; q
0
2, the probability is given by

wq1q2q0

1q
0

2
D 2
ı."q1 C "q2 � "q0

1
� "q0

2
/ jTfij2; (5.6.14)

where conservation of the z-component of momentum,p1zCp2z�p0
1z�p0

2zD0, is im-
plicit. In ordinary units, this scattering probability also has the dimensions L6T �1.
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Chapter 6
Quantum Theory of Gyromagnetic Processes

First order processes are described by a Feynman diagram with a single
electron-photon vertex. In the presence of a static magnetic field, such a diagram
describes six allowed processes: emission and absorption of a photon by an electron
or a positron, and one-photon pair creation or annihilation. These are referred to
here as the first-order gyromagnetic processes.

General results for gyromagnetic processes are written down in � 6.1, including
the probability of gyromagnetic processes, and kinetic equations that describe the
effects of gyromagnetic emission and absorption and pair creation. The theory is
applied to the quantum theory of cyclotron emission in � 6.2 and to the quantum
theory of synchrotron emission in � 6.3. One-photon pair creation and annihilation
are discussed in � 6.4.

6.1 Gyromagnetic Emission and Pair Creation

In this section the general probability of first-order gyromagnetic processes is
identified, and kinetic equations are written down for each of the processes. Some
general results relating to the kinematics of gyromagnetic processes are also derived,
including explicit solutions of the resonance condition.

6.1.1 Probability of Gyromagnetic Transition

The probability of gyromagnetic emission follows directly from (5.6.12) and the
other rules. One finds

w�
0�
Mqq0 .k/ D e2RM.k/

"0j!M.k/j
ˇ̌
e�
M�.k/Œ�

�0�
q0q .k/�

�
ˇ̌2
2
ı

�
�"q � �0"q0 � !M .k/

�
; (6.1.1)
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where �, �0 label the signs of the particle energies, and q, q0 denote the other
quantum numbers that describe the state of the electron or positron. The labelM for
the wave mode of the wave quantum is omitted below where no confusion should
result. The set q denotes the parallel momenta, pz, the principal quantum number,
n, and a spin quantum number, s, and q0 denotes p0

z; n
0; s0. Conservation of parallel

momentum is implicit in (6.1.1) and sometimes it is relevant to make this explicit
by including a factor Z

dp0
z

2

2
ı.�pz � �0p0

z � kz/

in the probability. The gauge-dependent quantum numbers do not appear in (6.1.1)
in the vertex function, Œ� �0�

q0q .k/�
�, which is, however, dependent on the choice of the

spin operator. For the choice of the magnetic-moment operator, the vertex function
is given by (5.4.18). The spin-dependent part may be isolated by writing the vertex
function in the form (5.5.25).

The dimensions of the probability are L3T �1. To exhibit these dimensions
explicitly, one includes relevant powers of c and „. Omitting all arguments k, and
writing (6.1.1) in SI units gives

w�
0�
Mqq0 D e2c2RM

"0„j!M j
ˇ̌
e�
M�.k/Œ�

�0�
q0q �

�
ˇ̌2
2
ı

�
!M � .�"q � �0"q0/=„�; (6.1.2)

where Œ� �0�
q0q
�� is dimensionless, and with �0p0

z D �pz � „kz implicit.

Gyromagnetic Emission by Electrons and Positrons

Gyromagnetic emission by an electron corresponds to � D �0 D C1 in (6.1.1). The
unprimed state is the initial state and the primed state is the final state. Gyromagnetic
emission by a positron corresponds to � D �0 D �1. The roles of the initial and final
states are reversed, with the unprimed state being the final state and the primed state
being the initial state. One may rewrite the probability for a positron in the same
form as for an electron, so that the unprimed state is the initial state and the primed
state is the final state, by setting � D �0 D �1 in (6.1.1), interchanging primed and
unprimed quantities, and changing the sign of k, using

!M.�k/ D �!M.k/; eM�.�k/ D e�
M�.k/;

RM.�k/ D RM.k/; Œ� �0�
q0q .�k/�� D Œ� �0�

q0q .k/�
��: (6.1.3)

The only net change in (6.1.1) is the change� CC
q0q .k/ for an electron to � ��

q0q .k/ for a
positron, as one expects. If the particles are unpolarized, the emission by a positron
is the same as the emission by an electron provided one makes the replacement
e�
M�.k/ ! eM�.k/ in (5.4.2), which corresponds to reversing the handedness of the
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waves. This is as one expects on the basis of a classical picture in which the positrons
spiral about the magnetic field lines in the opposite sense to the electrons, so that
the handedness of the radiation that a positron emits is opposite to the handedness
of the emission by an electron.

Unpolarized Particles

When one is not interested in the spins of the particles, it is appropriate to average
over initial spins and sum over final spins. Sums over spins are performed for the
outer product of a vertex function and its complex conjugate in (5.4.23). For an
arbitrary wave mode, this gives

X
s;s0

ˇ̌
e�
M�.k/Œ�

�0�
q0q .k/�

�
ˇ̌2 D 2"0

n0"n
�
C �0�
n0n.pz;k/

�
M
;

�
C �0�
n0n.pz;k/

�
M

D e�
M�.k/eM�.k/

�
C �0�
n0n.pz;k/

���
; (6.1.4)

with
�
C �0�
n0n
.pz;k/

���
given explicitly by (5.4.24).

For unpolarized particles, (6.1.1) is replaced by

Nw�0�
Mqq0.k/ D �0e

2RM .k/

2j!M.k/j
�
C �0�
n0n.pz;k/

�
M
2"0

n0"n 2
ı
�
�"n � �0"0

n0 � !M.k/
�
;

(6.1.5)

with "n D "n.pz/ D .m2 C p2z C p2n/
1=2, p2n D 2neB , and with "0

n0 D "n0.p0
z/.

The factor 2 in the denominator in (6.1.5) applies to emission or absorption, and
arises from averaging over the initial spins and summing over the final spins of the
particle. For one-photon pair production one sums over the spins of both particles,
so that the factor 1=2 is omitted in (6.1.5), and for pair decay into one photon one
averages over the spins of both particles, so that the factor 1=2 is replaced by 1=4 in
(6.1.5).

Reduction to the Nonquantum Limit

It is of interest to derive the nonquantum limit from the relativistic quantum case.
Specifically, consider the reduction of the probability (6.1.5) to its semi-classical
counterpart (4.1.9). The semi-classical result for gyromagnetic emission for an
electron at harmonic a may be written

wM .a; k; p/ D �0e
2RM .k/

�!M.k/

ˇ̌
e�
M�.k/U

�.s; kM /
ˇ̌2
2
ı

�
.kM u/k � a˝e

�
; (6.1.6)
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and the objective is to derive (6.1.6) from (6.1.1) with � D �0 D 1. One step is
the replacement of the resonance condition, expressed through the ı-function in
(6.1.5), by its classical counterpart, expressed through the ı-function in (6.1.6). The
resonance condition

! � �"n C �0"0
n0 D 0; (6.1.7)

needs to be expanded in powers of „. Including „ explicitly gives ! ! „!, "n D
"n.pz/ D .m2c4 C p2z c

2 C 2neB„c2/1=2, "0
n0 D "n0.p0

z/, �
0p0

z D �pz � „kz. One
assumes „ ! 0 and n; n0 ! 1 with n„ ! p2?=2eB and n � n0 D a remaining
finite. The expansion in powers of „ involves the Taylor series

"0
n0 D

�
1 � OD C 1

2
OD2 C � � �



"n; OD D a

@

@n
C „kz

@

@pz
; (6.1.8)

with @=@n ! .„eB=p?/.@=@p?/. For gyromagnetic emission by an electron, to
lowest order in „ this gives „! � "n C "0

n0 ! „Œ.ku/k � a˝0� with p
�

k D
Œ"n; 0; 0; pz� D mu�k , ˝0 D eB=m. The other step is to relate the 4-vector U�.a; k/

in (6.1.6) to the vertex function in (6.1.1). This involves the large-n approximation
to the J -functions: writing the argument as x D „k2?=2eB D z2=4n, where
z D k?p?=eB is the argument of the Bessel functions in U�.a; k/. Then the
J -functions are expanded in Bessel functions using (A.1.53), which is an expansion
in z=n. The expansion gives

J n�

�
z2

4n



D
�
.nC �/Š

nŠn�

�1=2 1X
jD0

bj

� z

2n

	j
J�Cj .z/; (6.1.9)

with b0 D 1, b1 D � 1
2
.� C 1/, and higher values given by (A.1.53), and where

Stirling’s approximation to the factor .n C �/Š=nŠn� gives unity for n ! 1. The
function J n�1

� differs from J n� only by a quantum correction:

J n�1
�

�
z2

4n



� J n�

�
z2

4n



D � k?

p?
J 0
�.z/: (6.1.10)

To lowest order only the terms in the vertex function that involve no spin flip
contribute, and these terms are independent of the choice of spin operator. For the
magnetic-moment operator, the vertex function (5.4.18) for an electron, � D �0 D 1,
and for no spin flip, s0 D s D ˙1, gives, to lowest order in „,

Œ� CC
q0q

�� D .iei /�a

�
U �.a; k/; (6.1.11)

in the large-n limit. Alternatively, the form in (6.1.4) in which the average over spins
is performed may be evaluated by making the large-n approximation to (5.4.24); this
gives �

CCC
n0n .pz;k/

���
2"0

n0"n
D 1

�2
U �.a; k/U ��.a; k/: (6.1.12)
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6.1.2 Resonant Momenta and Energies

The conditions under which gyromagnetic emission is possible in general are
determined by the resonance condition. The resonance condition (6.1.7) determines
the properties of the initial and final particle for given !; kz and given n; n0. To find
the values of pz; "n or p0

z; "
0
n0 for which resonance at given !; kz; n; n

0 is possible,
one needs first to eliminate the square roots in (6.1.7). One way of achieving this is
to note that all resonance conditions are included in D.!; "n; "0

n0/ D 0, with

D.!; "n; "
0
n0/ D .! � �"n C �0"0

n0/.! C �"n � �0"0
n0/

� .! � �"n � �0"0
n0/.! C �"n C �0"0

n0/

D !4 � 2!2."2n C "02
n0/C ."2n � "02

n0/
2: (6.1.13)

Using �0p0
z D �pz �kz,D.!; "n; "0

n0/ D 0 gives a quadratic equation for either pz or
p0

z. (The kinematic restrictions implied by the resonance conditions were discussed
in detail by Péres Rojas and Shabad [15], whose solutions differ from the following
only in choice of notation.)

The quadratic equation that determines pz is

p2z � 2�kzpzfnn0 � .!2 � k2z /f 2
nn0 C !2

!2 � k2z
."0n/

2 D 0; (6.1.14)

and the quadratic equation that determines p0
z is

p02
z C 2�0kzpzfn0n � .!2 � k2z /f 2

n0n C !2

!2 � k2z
."0n0/

2 D 0; (6.1.15)

with ."0n/
2 D m2 C 2neB and

fnn0 D ."0n/
2 � ."0

n0/
2 C !2 � k2z

2.!2 � k2z /
D .n � n0/eB

.k2/k
C 1

2
; fn0n D 1 � fnn0 :

(6.1.16)

It is convenient to write

g2nn0 D g2n0n D
�
!2 � k2z � ."0n � "0n0/

2
��
!2 � k2z � ."0n C "0n0/

2
�

4.!2 � k2z /
2

: (6.1.17)

The solutions of (6.1.14) may be written �pz D p˙
nn0 , �0p0

z D p˙
n0n

. The relevant
solutions are

pṅn0 D kzfnn0 ˙ !gnn0 ; p0
ṅ0n D �kzfn0n ˙ !gn0n: (6.1.18)
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The energies "ṅn0 D "n.pṅn0/, "0
ṅ0n D "0

n0.pṅ0n/ are determined by

Œ"ṅn0 �
2 D .!fnn0 ˙ kzgnn0/2; Œ"0

ṅ0n�
2 D .!fn0n � kzgn0n/

2: (6.1.19)

The signs of the energies must be chosen such that the resonance condition
! � �"n C �0"0

n0 D 0 is satisfied. The identity fnn0 C fn0n D 1 implies the solutions
�"n D "˙

nn0 , �0"0
n0 D "0˙

n0n, with

"˙
nn0 D "n.p

˙
nn0/ D !fnn0 ˙ kzgnn0 ; "0˙

n0n D "0
n0.p

˙
n0n/ D �!fn0n ˙ kzgn0n:

(6.1.20)

The quantum recoil is neglected in the nonquantum limit. The resonance
condition "! � aeB � pzkz D 0 may be solved for the resonant values of pz and "
for fixed p?. The solutions correspond to p˙

nn0 , given by (6.1.18), and "˙
nn0 , given by

(6.1.19), and with n0 D n � a and with

fnn�a ! aeB

.k2/k
; g2n n�a ! f 2

nn�a � "2?
.k2/k

; (6.1.21)

with "2? D m2 C p2?. It follows that the term C 1
2

in (6.1.16) is associated with the
quantum recoil, and is intrinsically quantum mechanical.

Allowed Resonances

The quadratic equations (6.1.14) and (6.1.15) may be written in the forms

.pz � �kzfnn0/2 D .p0
z C �0kzfn0n/

2 D !2g2nn0 : (6.1.22)

A necessary condition for resonance to be possible is that g2nn0 be non-negative.
From (6.1.17), this condition requires either

!2 � k2z � ."0n � "0n0/
2; (6.1.23)

which is the condition for gyromagnetic emission to be allowed, or

!2 � k2z � ."0n C "0n0/
2: (6.1.24)

which is the condition for one-photon pair creation to be allowed. Resonance is
forbidden for ."0n�"0

n0/
2 < !2�k2z < ."0nC"0

n0/
2, referred to as the dissipation-free

region, where waves are undamped due to either gyromagnetic absorption or pair
creation.

For gyromagnetic emission in vacuo by an electron or a positron, � D �0, the
condition !2 � k2z > 0 excludes resonances with a D n � n0 � 0. For !2 � k2z > 0
one may make a Lorentz transformation to the frame in which kz is zero, and in
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1

2

Fig. 6.1 Initial and final resonance ellipse in "0 D .m2 C p2
?
/1=2–pz space. The horizontal lines

represent the physically allowed values p2
?

D 2neB with n D 0–4. The interpretation is discussed
in the text

this frame the condition that the energies given by (6.1.20) be non-negative requires
fnn0 > 0, fn0n < 0, and the identity fn0n D 1 � fnn0 then implies that gyromagnetic
emission is possible only for 0 < fnn0 < 1, and this requires 2.n�n0/eB > !2�k2z .
Thus for !2 � k2z > 0 gyromagnetic emission is possible only for n > n0. This
corresponds to the normal Doppler effect, with the anomalous Doppler effect being
forbidden in vacuo. Gyromagnetic emission is allowed for !2 � k2z � 0, requiring
n D n0 for !2 � k2z D 0 and emission by the anomalous Doppler effect, n < n0,
requires !2 � k2z < 0.

For one-photon pair creation, � D ��0 D 1, (6.1.24) requires !2 � k2z > 0 and
the same argument leads to the requirements fnn0 > 0, fn0n > 0 for the energies
to be positive. The identity fn0n D 1 � fnn0 then requires 0 < fnn0 < 1. For pair
creation, there is no restriction on the sign of n � n0, but the magnitude is restricted
by 2jn� n0jeB < !2 � k2z .

Graphical Solutions of Resonance Condition

A graphical solution of the resonance condition can be useful and informative.
Consider momentum space, specifically p?–pz space. The physically allowed states
correspond to the discrete values p2? D p2n D 2neB , n D 0; 1; : : :, which
correspond to horizontal lines in p?–pz space. It is found more convenient to choose
the vertical axis to be "0 D .m2 C p2?/1=2, so that the horizontal lines start with
"0 D m for n D 0 in "0–pz space, as illustrated in Fig. 6.1. The resonance condition
may be plotted on the same diagram in two different ways, one corresponding to the
initial conditions, and the other to the final conditions.

Suppose that the forms (6.1.14) and (6.1.15) for the resonance condition are
expressed in terms of "0 by writing "2n.pz/ D ."0/2 C p2z and "2

n0.p
0
z/ D ."0/2 C

p2z � 2�0pzkz C k2z � 2.n� n0/eB . Then (6.1.14) becomes

.pz � pc/
2

!2f 2
nn0

C ."0/2

.!2 � k2z /f
2

nn0

D 1; pc D �0kzfnn0 ; (6.1.25)
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and (6.1.15) becomes

.p0
z � p0

c/
2

!2f 2
n0n

C ."0/2

.!2 � k2z /f 2
n0n

D 1 p0
c D ��kzfn0n: (6.1.26)

For !2 � k2z > 0, (6.1.25) and (6.1.26) are resonance ellipses, called the initial and
final ellipse. For given !, kz, n, n0, allowed initial conditions correspond to points
in "0–pz space where the initial ellipse intersects the line corresponding to "0 D "0n.
Similarly, allowed final conditions correspond to points in "0–pz space where the
final ellipse intersects the line corresponding to "0 D "0n0 .

An example of such a graphical plot is shown in Fig. 6.1 for gyromagnetic
emission by an electron, � D �0 D 1. For given n � n0, the initial and final
ellipses depend on ! and kz. The initial ellipse intersects the line "0 D "0n only
for .!2 � k2z /f

2
n0n > ."0n/

2, and two resonances are possible when this condition is
satisfied. The intersections of the initial ellipse with the line "0 D "0n correspond to
the solutions pṅn0 , given by (6.1.18), and the intersections of the final ellipse with
line "0 D "0n0 correspond to the solutions pṅ0n. These two solutions coincide at
threshold, where the initial ellipse is tangent to the line "0 D "0n and the final ellipse
is tangent to the line "0 D "0n0 . These threshold conditions correspond to gnn0 D 0.

6.1.3 Kinetic Equations for Gyromagnetic Processes

For a distribution of electrons emitting and absorbing photons through gyromagnetic
transitions, the evolution of the system of photons and electrons is described by
a set of kinetic equations. The kinetic equations for gyromagnetic emission in
the nonquantum limit are written down in � 4.1, notably the quasilinear equation
(4.1.24) for the particles. The fully quantum counterparts of these equation are
derived as follows.

Kinetic Equations for Gyromagnetic Emission

Consider the effect of transitions q ! q0 and the inverse transition q0 ! q on
the occupation number,NM.k/, of the wave quanta emitted in the former transition
and absorbed in the latter transition. The probability wCC

Mqq0 .k/ is the same for both

transitions. Let the occupation number for electrons in the state q be nC
q . The rate

of increase of NM.k/ is determined by the probability per unit time of emission,

wCC
Mqq0.k/

�
1CNM.k/

�
nC
q .1 � nC

q0/;

minus the probability per unit time of absorption

wCC
Mqq0.k/NM.k/n

C
q0.1 � nC

q /:
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If more than one transition with given q and different q0 gives emission of the same
wave quanta (same k and same wave mode M ), then one is to sum over all such
states q0. The resulting kinetic equation for the waves is

DNM.k/

Dt
D
X
qq0

wCC
Mqq0.k/

˚
nC
q .1 � nC

q0 /CNM.k/Œn
C
q � nC

q0 �
�
; (6.1.27)

which may be written in the form

DNM.k/

Dt
D ˇM.k/ � �M .k/NM.k/;

ˇM .k/ D
X
qq0

wCC
Mqq0.k/ n

C
q ; �M .k/ D �

X
qq0

wCC
Mqq0.k/ Œn

C
q �nC

q0 �; (6.1.28)

where ˇM.k/ is an emission coefficient (the rate per unit time that the photon
occupation number increases due to spontaneous emission), and �M .k/ is the
absorption coefficient.

The sums over the states q; q0 in (6.1.28) warrant comment. The sum over q
is over the initial electrons, and this includes the integral over .eB=2
/dpz=2
 ,
as well as the sums over n; s. In applications one is often interested in specific
transitions, for example, the cyclotron transition n D 1; s D �1 to n0 D 0; s0 D �1,
and then the sum over q reduces to the integral over .eB=2
/dpz=2
 alone. The
sum over q0 is over all possible final states that are allowed. This sum is usually
redundant because the final state is uniquely determined. In the example of cyclotron
emission n D 1; s D �1 to n0 D 0; s0 D �1, the final state is the ground state, and
p0

z is implicitly determined by conservation of momentum, so that the sum over q0
can be omitted.

The rate of change of the occupation number, nC
q , of the electrons is given by the

difference between the probabilities per unit time of transitions to the state q, due to
emission, q00 ! q, from higher energy states, and absorption, q ! q0, from lower
energy states, minus the probabilities per unit time of the inverse transitions. This
gives

dnC
q

dt
D �

Z
d3k

.2
/3

�X
q0

wCC
Mqq0.k/

˚
nC
q .1 � nC

q0/CNM.k/.n
C
q � nC

q0 /
�

�
X
q00

wCC
Mq00q.k/

˚
nC
q00.1�nC

q /CNM.k/.nC
q00�nC

q /
��
; (6.1.29)

where q0 denotes the quantum numbers n0; s0; p0
z D pz � kz and q00 denotes

n00; s00; p00
z D pz C kz. The kinetic equations (6.1.28) and (6.1.29) reproduce their

unmagnetized counterparts, when the states are identified according to q ! p,
q0 ! p � k, q00 ! p C k.
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The kinetic equations for positrons follow from those for electrons by making
the replacements:

wCC
Mq0q.k/ ! w��

Mqq0.k/; nC
q ! n�

q0 ; nC
q0 ! n�

q :

Kinetic Equations for One-Photon Pair Creation

The kinetic equations for one-photon pair creation and decay follow from arguments
similar to those for gyromagnetic emission. On including the occupation numbers,
the probability of pair annihilation transitions is wC�

Mqq0.k/ n
C
q n

�
q0 Œ1 C NM.k/�, and

the probability of pair-creation transitions is wC�
Mqq0.k/NM.k/.1 � nC

q /.1 � n�
q0/.

A pair-annihilation transition increases the occupation number, NM.k/, and de-
creases the occupation numbers of both electrons, nC

q , and positrons, n�
q , and a

pair-creation transition has the opposite effect. Adding up the rates of change, the
resulting kinetic equation for the photons is

DNM.k/

Dt
D
X
qq0

wC�
Mqq0.k/

�
nC
q n

�
q0 �NM.k/.1 � nC

q � n�
q0/
�
: (6.1.30)

The term involving nC
q n

�
q0 describes the effect of pair annihilation, and the term

involving 1 � nC
q � n�

q0 describes the effect of pair creation.
The corresponding kinetic equations for the electrons and positrons are

dnC
q

dt
D
Z

d3k

.2
/3

X
q0

wC�
Mqq0.k/

�
NM.k/.1 � nC

q � n�
q0/� nC

q n
�
q0

�
;

dn�
q0

dt
D
Z

d3k

.2
/3

X
q

wC�
Mqq0.k/

�
NM.k/.1 � nC

q � n�
q0/ � nC

q n
�
q0

�
: (6.1.31)

As in (6.1.30), the term involving nC
q n

�
q0 describes the effect of pair annihilation,

and the term involving 1 � nC
q � n�

q0 describes the effect of pair creation. The Pauli

exclusion principle requires nC
q ; n

�
q0 � 1. Nevertheless it is possible for 1�nC

q �n�
q0

to be negative, which is the condition for a maser-like process to occur. This results
in an exponential growth of photons and an exponential decay of the number of
electrons and positrons, so that 1�nC

q �n�
q0 becomes less negative, with the maser-

like process ceasing for 1 � nC
q � n�

q0 D 0.
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6.1.4 Anharmonicity and Quantum Oscillations

Several different quantum effects can be important in cyclotron emission in strong
magnetic fields, and these became of direct interest in connection with observed
emission from X-ray pulsars, notably Her X-1 [14].

Anharmonicity

A feature of the relativistic theory of gyromagnetic emission and absorption,
compared with the nonrelativistic theory, is that each transition, n ! n0 for
emission by an electron, occurs at a different frequency. Consider the nonrelativistic
quantum limit: the transitions between electron states with quantum numbers n and
n0 involves emission (or absorption) of a wave quantum that satisfies the resonance
condition ! � kzvz D .n � n0/˝e . For given kz, the resonant frequency then
depends on only the difference n � n0, and not on n, n0 separately. This is due
to the energy of the electron being a sum of the kinetic energy, p2z =2m, associated
with the motion along the field line, and the energy .nC 1

2
/„˝e (in ordinary units)

associated with the gyromotion, plus an energy ˙ 1
2
„˝e associated with the spin.

The energy eigenvalues are harmonically related, such that the difference between
neighboring levels has a fixed value, „˝e , and emission occurs only at (Doppler
shifted) harmonics of this difference. When relativistic quantum effects are taken
into account, this degeneracy between levels is broken. Specifically, for givenpz and
kz, the frequency determined by the resonance condition, (6.1.7), gives a different
value of ! for every different choice of n and n0. The resonant frequency depends
on n or n0, as well as on n � n0. This effect is sometimes called anharmonicity.

Quantum Oscillations

A characteristic property of the quantum theory of gyromagnetic emission and
absorption, and of one-photon pair creation and annihilation in a magnetic field, is
that the transition rates have square-root singularities at the thresholds where each
new value of n; n0 becomes allowed. These thresholds are determined by gnn0 D 0,
with g2nn0 given by (6.1.17).

The gyromagnetic emission and absorption coefficients (6.1.28) involve sums
over the initial and final states, which include integrals over pz and p0

z. These
integrals are performed over two ı-functions in the probability (6.1.1). Suppose the
integral over p0

z, is performed over ı.�0p0
z � �pz C kz/, as is implicit in (6.1.1). Then

the integral over pz is of the generic form

I ��
0

nn0 D
Z
dpz F

��0

nn0 .pz/ ıŒ�"n.pz/� �0"n0.p0
z/� !�; (6.1.32)
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Fig. 6.2 The dependence of
the logarithm of the emission
coefficient on !=˝e is shown
for B=Bc D 0:5 for the first
three harmonics. The
calculations were performed
for � D 
=2 and radiation
polarized (a) perpendicular to
B, and (b) along B . The
thresholds for the lowest
transitions correspond to
!=m D p

2� 1;p
3� 1;

p
4� 1 for

n0 � n D 1; 2; 3, respectively,
with˝e=m D B=Bc

where F ��0

nn0 .pz/ is arbitrary. Both the emission and absorption coefficients (6.1.28)
are of the form (6.1.32), as is any other integral that involves a sum of the probability
(6.1.1) over the initial and final states. Performing the integral over the ı-function
in (6.1.32) gives

I ��
0

nn0 D
X

˙
F ��0

nn0 .p
˙
nn0/

ˇ̌
ˇ̌ �pz

"n.pz/
� �0p0

z

"n0.p0
z/

ˇ̌
ˇ̌
�1

˙
; (6.1.33)

where �pz � �0p0
z � kz D 0 and the resonance condition expressed by the ı-function

in (6.1.32) are used. The solutions (6.1.18) and (6.1.20) imply

ˇ̌
ˇ̌ �pz

"n.pz/
� �0p0

z

"n0.p0
z/

ˇ̌
ˇ̌
�1

˙
D
ˇ̌
ˇ̌ "n.pz/"n0.p0

z/

kz�"n.pz/� !pz

ˇ̌
ˇ̌
˙

D "˙
nn0"

0˙
n0n

.!2 � k2z / gnn0

: (6.1.34)

The function g2nn0 , given by (6.1.17) has zeros for each value of n0; n, implying that
(6.1.34) have a square-root singularity at each threshold. This singular behavior is
sometimes called quantum oscillations in the case of gyromagnetic emission. An
example is illustrated in Fig. 6.2 for B=Bc D 0:5.
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For the emission and absorption coefficients (6.1.28) evaluation using (6.1.34)
gives

ˇM .k/ D
X

˙

�0e
3B

.2
/2

2
4R

ˇ̌
e� � �CC

q0q
.k/
ˇ̌2

!.! � k2z / gnn0

3
5
M

"˙
nn0"

0˙
n0nnn˙; (6.1.35)

�M .k/ D �
X
˙

�0e
3B

.2
/2

2
4R

ˇ̌
e� � �CC

q0q .k/
ˇ̌2

!.! � k2z / gnn0

3
5
M

"ṅn0"
0
ṅ0n.nn˙ � n0

n0˙/; (6.1.36)

respectively, with "˙
nn0 , "0˙

n0n defined by (6.1.20), and where subscriptM indicates that
R, e and ! are to be evaluated for the mode M , and where only the contributions
for a specific transition n; s ! n0; s0 is retained explicitly.

On physical grounds one expects that the quantum oscillations, being an intrinsi-
cally quantum phenomenon, to become unobservable for sufficiently nonrelativistic
particles. As the classical limit is approached the square-root singularities, that
lead to the spiky structure in Fig. 6.2, become densely packed, with a square-root
singularity at the threshold for each new n; n0. The quantum oscillations become
increasingly unobservable when the peaks are washed out by line-broadening
effects. In a nonrelativistic thermal plasma the most important line-broadening
effect is Doppler broadening, and the quantum oscillations become unobservable
when the Doppler width exceeds the separation between neighboring peaks in the
quantum oscillations. The classical Doppler broadening is zero for perpendicular
propagation, and then the transverse Doppler effect (due to the spread in Lorentz
factors) needs to be taken into account. In the absence of Doppler broadening,
there is a natural linewidth for emission by an individual particle: the finite half-
life of the upper state introduces an uncertainty in the energy of the transition, and
hence of its frequency. When this linewidth exceeds the separation between the
peaks associated with the quantum oscillations, the quantum oscillations become
intrinsically unobservable [2].

6.2 Quantum Theory of Cyclotron Emission

Gyromagnetic emission from nonrelativistic electrons is called cyclotron
emission. In a relativistic quantum treatment there are subtleties in what constitutes
the ‘nonrelativistic’ approximation, and to avoid confusion, the term ‘cyclotron’
approximation is used here. In practice, the most important approximation is that
the J -functions J n� .x/ defined by (5.2.24), are approximated by the leading term in
their expansion in powers of x. In this section, after a general introduction to the
quantum theory of cyclotron emission, radiative transitions between low Landau
levels for an electron in vacuo are discussed in detail, and some expressions for
cyclotron emission in a cold plasma are written down.
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6.2.1 Cyclotron Approximation

A gyromagnetic transition by an electron may be defined as a transition between
an initial state with quantum numbers q D pz; n; s, and a final state with quantum
numbers q0 D p0

z; n
0; s0, with p0

z D pz � kz. The parallel motion is unimportant
in classifying gyromagnetic transitions: one may make a Lorentz transformation to
the frame pz D 0, and provided one has jkzj � m in this frame, the parallel recoil
motion is nonrelativistic. The perpendicular momentum is quantized, p? D pn D
.2neB/1=2, and the nonrelativistic condition p? � m requires 2nB=Bc � 1. In
superstrong fields, B=Bc �>1, even the first Landau level, n D 1, has a relativistic
energy, and the nonrelativistic approximation is not valid. For weaker fields the
nonrelativistic approximation places a limit on n � Bc=2B .

The transitions n; s ! n0; s0 may be described in terms of the ladders in Fig. 5.1.
Each step in a ladder represents a state n. The left hand ladder corresponds to sD�1,
and includes the ground state n D 0, and the right ladder corresponds to s D C1
and starts from n D 1. The normal Doppler effect is defined such that emission
leads to a transition in which n decreases to n0 < n, and the anomalous Doppler
effect to a transition in which n increases to n0 > n. One can classify transitions as
non-spin-flip for s0 D s, spin-flip for s D 1; s0 D �1, in which the jump is from the
right ladder to the left ladder, and reverse spin-flip for s D �1; s0 D 1, in which the
jump is from the left ladder to the right ladder.

The value of j D n�n0 determines the number of steps down which the electron
jumps in a transition. The normal Doppler effect corresponds to j > 0, and is
the only case allowed for !2 � k2z > 0. The anomalous Doppler effect, in which
the particle moves from a lower to a higher Landau level (n0 > n), is possible for
k2z > !2. The case j D 0, in which n D n0 does not change, is sometimes referred
to as the Cerenkov effect, although this can cause confusion with the unmagnetized
case. Emission at j � 0 is allowed only for waves with refractive index greater than
unity, and is not considered here.

A major simplification in the cyclotron approximation follows from the assump-
tion that the argument of the J -functions in the vertex function (5.4.18) is small,
x D k2?=2eB � 1. One has

x D k2?
2eB

D k2 sin2 �

2m˝e

D 1

2

�
k?
m


2 �
B

Bc


�1
D
�
k?
˝e


2
B

2Bc
: (6.2.1)

In the cyclotron approximation, k?; kz; ! are assumed of order the cyclotron
frequency, ˝e , and then (6.2.1) implies that x is of order B=Bc . The formal
expansion parameter may be regarded as B=Bc . This approximation obviously
breaks down in supercritical magnetic fields, B=Bc �>1.

The power series expansions of the J -functions converge rapidly for x � 1, and
each function may be approximated by its leading term. For example, for x � 1,
(A.1.51) implies that J n

n0�n.x/ with n0 D n � j is approximated by
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J n�j .x/ D .�/j J n�j
j .x/ 
 .�/j

j Š

�
nŠ

.n � j /Š

1=2

xj=2: (6.2.2)

The approximation (6.2.2) applies for any integer values of n; j subject to the
restrictions n � 0, j � n, with J n� .x/ identically zero for n < 0 or � < �n.

Cyclotron Approximation to the Vertex Function

The foregoing approximations are applied to the vertex function in the form (5.4.18).
This involves assuming thatpz=m,pn=m are small and expanding in powers of them
[13]. The momentum, kz, of the wave quantum is assumed to be of the same order
as the momentum of the particle, so that k?=m, kz=m, p0

z=m are of the same order
as pz=m. For the quantity pn=m D .2nB=Bc/

1=2 to be small for modest values of
n, one also needs to make the weak-field approximationB � Bc .

The expression (5.4.18) for the vertex function involve factors a0̇ ; a˙ and
b 0̇ ; b˙, as well as J -functions. For an electron, � D �0 D 1, the as and bs are
approximated by

a0C 
 aC 
 1; b0C 
 bC 
 1;

a0� 
 p0
z

2m
; a� 
 pz

2m
; b0� 
 pn0

2m
; b� 
 pn

2m
; (6.2.3)

where only terms up to first order in small quantities are retained. These approxi-
mations allow one to order the coefficients of the J -functions in (5.4.18) in powers
of the small quantities.

For a transition that involves a jump of j rungs down the ladder in Fig. 5.1, one
has n0 D n � j . The leading J -functions are those with lower index n0 � nC 1 D
�.j � 1/, and these appear only in the � D 1; 2 components of Œ� CC

q0q .k/�
�. For

s D s0 these are the only terms that need be retained. However, for s ¤ s0, the
coefficients of these terms are one order higher in the small quantities, and the� D 3

component is then of the same order as the � D 1; 2 components. (The � D 0

component is redundant when one chooses the temporal gauge for the polarization
4-vector of the waves.)

The relevant approximation to the vertex function (5.4.18) is different for
transitions involving no spin flip (s D s0), those involving a spin flip (s D 1,
s0 D �1) and those involving a reverse spin flip (s D �1, s0 D 1). There are
three factors in the vertex function (5.4.18), and each of these needs to be evaluated
for the four different combinations of spins for specified j D n � n0. The first is
the phase factor .iei /j . The second factor involves the combination of a-factors,
which reduce to, for � D �0 D 1,

a0
s0as � a0

�s0a�s D s
�
1
2
.1C s0s/C 1

2
.1 � s0s/ .p0

z � pz/=2m;
�
;

a0
s0a�s C a0�s0as D 1

2
.1C s0s/ .p0

z C pz/=2mC 1
2
.1 � s0s/: (6.2.4)
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The other factor involves the J -functions. Retaining only the lowest order terms in
x1=2; .B=Bc/

1=2 for each value of s; s0, one finds

b0
s0bsJ

n�1
n0�n C s0sb0�s0b�sJ nn0�n D .�/j

j Š

�
lŠ

.l � j /Š


1=2
xj=2

�

8̂
<̂
ˆ̂:

1 for s D s0;
�j.B=Bc/1=2=.l C 1 � j /1=2 for s D �s0 D 1;

O.B=Bc; x/ for s D �s0 D �1;
b0�s0bse�i J n�1

n0�nC1 � ss0b0
s0b�sei J nn0�n�1

D .�/j�1

.j � 1/Š
�

lŠ

.l � j /Š


1=2
x.j�1/=2

� e�i 

8̂
<̂
ˆ̂:

.B=Bc/
1=2 for s D s0;

1=.l C 1 � j /1=2 for s D �s0 D 1;

O.B=Bc; x/ for s D �s0 D �1:
(6.2.5)

In the entries for the reverse spin flip (s D �1; s0 D 1) in (6.2.5) the leading
terms cancel, and the remaining terms are of higher order than those retained in
the following discussion.

Multipole Expansion of the Vertex Function

Let �CC
n0;s0In;s.k/ denote the space components of the vertex function. For non-spin-

flip transitions the leading terms give

�CC
n�j;sIn;s.k/ D .�i/j ei.j�1/ 

�
B

2Bc


1=2 �
lŠ

.l � j /Š

1=2

x.j�1/=2

.j � 1/Š .1; i; 0/;
(6.2.6)

with n D l C .s C 1/=2. With the single-particle current for the emitting electron
proportional to the vertex function (6.2.6), and x D k2?=2eB , it follows that the

current is proportional to kj�1
? . This allows a multipole interpretation: on expanding

a current in powers of jkj, terms that depend on jkjj�1 correspond to either 2j -
electric multipole or 2j�1-magnetic multipole. The non-spin-flip term (6.2.6) is the
2j -electric multipole term, with j D n � n0 D l � l 0, so that j corresponds to the
change in the orbital quantum number. Specifically, the transition with s0 D s and
j D l � l 0 D 1 corresponds to electric dipole radiation, the transition with s0 D s

and j D l � l 0 D 2 corresponds to electric quadrupole radiation, and so on.
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For the spin-flip transition, s D 1 ! s0 D �1, (6.2.6) is replaced by

�CC
n�j;�1In;1.k/ D .�i/j ei.j�1/ 

�
lŠ

.l � j C 1/Š


1=2
x.j�1/=2

.j � 1/Š
.kz; ikz;�k?/

2m
;

(6.2.7)

which is the 2j�1-magnetic multipole term. In particular, the transition s D 1; s0 D
�1 for j D n � n0 D 1 involves no change in the orbital quantum number, l 0 D l ,
and this corresponds to magnetic dipole radiation. The reverse spin-flip transition,
s D �1 ! s0 D 1, is of higher order and is effectively forbidden in the cyclotron
approximation.

Probability of Cyclotron Emission

The probability of gyromagnetic emission, (6.1.1), becomes the probability of
cyclotron emission when the cyclotron approximation is made, in particular, when
the approximation (6.2.6), (6.2.7) is made to the vertex function. The probability
depends on the properties of the emitted waves, and it is convenient to assume a
general form that applies when spatial dispersion is unimportant. For a wave in a
modeM , this corresponds to k? D nM! sin � , kz D nM! cos � and

eM D LMκ C TM t C ia

1C L2M C T 2M
; RM D 1C L2M C T 2M

2.1C T 2M /nM@.!nM /=@!
; (6.2.8)

with κ D .sin � cos	; sin � sin ; cos �/, t D .cos � cos	; cos � sin 	;� sin �/,
a D .� sin ; cos	; 0/ here.

For an electron, the probability of a non-spin-flip transition, n ! n0 D n � j , is

wnsf
Mn.n�j /.k/ D �0e

2.1CLM sin � C TM cos �/2

.1C T 2M /2!nM@.!nM /=@!
n
2.j�1/
M sin2.j�1/ �

� lŠ

.l � j /Š Œ.j � 1/Š�2
�
B

2Bc


2�j �!
m

	2.j�1/
2
ı."n � "0

n�j � !/; (6.2.9)

where the nonrelativistic approximation is not made to the ı-function. The proba-
bility of a transition n ! n0 D n � j with a spin-flip, s D 1 ! s0 D �1, is

wsf
Mn.n�j /.k/ D �0e

2.cos2 � C T 2M /

.1C T 2M /2!nM@.!nM /=@!
n
2j
M sin2.j�1/ �

� lŠ

2j�1.l � j C 1/Š Œ.j � 1/Š�2

�
B

Bc


1�j �!
m

	2j
2
ı."n � "0

n�j � !/:
(6.2.10)
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The probabilities corresponding to (6.2.9) and (6.2.10) for a positron may be
obtained by replacing the polarization vector by it complex conjugate.

The dependence of the emissivity (6.2.9) on refractive index is / n
2j�1
N for non-

spin-flip transitions and / n
2j
N for spin-flip transitions. These are the characteristic

dependences on refractive index for 22j -electric multipole emission, and 22j -
magnetic multipole emission, respectively.

6.2.2 Spontaneous Gyromagnetic Emission in Vacuo

An electron in a magnetic field emits gyromagnetic radiation spontaneously. The
rate of transitions due to gyromagnetic emission is given by summing the probability
(6.2.1) over the density of states of the emitted photon. For transverse waves in
vacuo the resulting rate, after summing over the two states of polarization, is
given by

Rq0q D 1
2
�0e

2

Z
d3k

.2
/3
1

!

h
j�CC

q0q
.k/j2 � jκ � �CC

q0q
.k/j2

i
2
 ı."n � "0

n0 � !/;

(6.2.11)

with q and q0 denoting pz; n; s and p0
z; n

0; s0, respectively, with "n, "0
n0 denoting

"n.pz/, "n0.p0
z/, respectively, and with p0

z D pz � kz. The power radiated, Pq0q , is
given by an analogous expression with the energy, !, per photon included in the
integrand:

Pq0q D 1
2
�0e

2

Z
d3k

.2
/3

h
j�CC

q0q .k/j2 � jκ � �CC
q0q .k/j2

i
2
 ı."q � "q0 � !/: (6.2.12)

Conservation of energy and parallel momentum imply that the energy and parallel
momentum of the radiating particle change according to

d

dt

�
"q

pz



D �

X
q0

1
2
�0e

2

Z
d3k

.2
/3

�
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cos �




�
h
j�CC

q0q
.k/j2 � jκ � �CC

q0q
.k/j2

i
2
 ı."q � "q0 � !/: (6.2.13)

In particular one has d"q=dt D �Pq0 Pq0q .
In vacuo, the integral over d3k in (6.2.11) or (6.2.12) may be rewritten as

an integral over frequency and solid angle. To perform the !-integral over the
ı-function, it is convenient to transform to the frame pz D 0. In this frame the
resonant frequency is ! D !nn0.�/, with

!nn0.�/ D 1

sin2 �

n�
m2 C 2eBn

�1=2 � �
m2 C 2eB.n cos2 � C n0 sin2 �/

�1=2o
:

(6.2.14)
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The rate (6.2.11) becomes

Rq0q D �0e
2

4


Z 1

�1
d cos �

h
j�CC

q0q .k/j2 � jκ � �CC
q0q .k/j2

i !nn0.�/Œ"0n � !nn0.�/�

"0n � !nn0.�/ sin2 �
;

(6.2.15)

with "0n D .m2 C 2neB/1=2. The power (6.2.12) reduces to an analogous expression
with an extra power of !nn0.�/ in the integrand.

Lorentz Transformation to the Laboratory Frame

It is sometimes convenient to use the frame pz D 0 to derive explicit expressions,
and then to generalize these expressions to an arbitrary frame, pz ¤ 0, by making a
Lorentz transformation.

Let quantities in the frame in which the particle has no parallel momentum be
denoted by a tilde ( Qpz D 0), and let the Lorentz transformation to the laboratory
frame, where the parallel momentum is pz, have a velocity V and a Lorentz factor
� D .1� V 2/�1=2. One has

"n.pz/ D � "0n; pz D � V"0n: (6.2.16)

In terms of the pitch angle, ˛, defined by

pz D p cos˛; pn D p sin˛; p D .p2z C p2n/
1=2; (6.2.17)

one has

� D 1

sin ˛
; V D cos˛: (6.2.18)

The frequency and angle of emission transform according to

Q! D !
1 � cos˛ cos �

sin˛
; cos Q� D cos � � cos˛

1 � cos˛ cos �
: (6.2.19)

Applying the Lorentz transformation to the expression (6.2.15) for Rq0q and to
the analogous expression for Pq0q involves making the appropriate replacements on
the right hand side, and noting that the rate, Rq0q , transforms as a frequency and
that the power, Pq0q , is an invariant. Specifically, one has Rq0q D � QRq0q with QRq0q

identified with the expression (6.2.15).

Spontaneous Cyclotron Emission in Vacuo

Consider spontaneous emission by an electron in vacuo, as described in the general
case by (6.2.3)–(6.2.5). In the cyclotron limit, the transition rate (6.2.3) with (6.2.6)
and (6.2.7) may be evaluated explicitly for transitions n ! n0 D n�j both without



270 6 Quantum Theory of Gyromagnetic Processes

and with a spin flip. The rates for emission of photons polarized perpendicular and
parallel to the projection of B onto the transverse plane may also be evaluated
explicitly. Let Rn!n�j denote the rate summed over the states of polarization, and
let rn!n�j be the difference in the rates for perpendicular and parallel polarization,
divided by the sum of these rates. One may interpret rn!n�j as giving a measure
of the degree of polarization, with positive values (rn!n�j > 0) favoring emission
of perpendicularly polarized photons. The actual degree of polarization depends on
the angle of emission.

For non-spin-flip transitions (s0 D s), one finds

Rnsf
n!n�j D ˛cm

lŠ

.l � j /Š
2jC1.j C 1/Š

.j � 1/Š .2j C 1/Š

�!
m

	2j�1 � B
Bc


2�j
;

rnsf
n!n�j D j

j C 1
; (6.2.20)

with n D l C 1
2
.1 C s/ and where ! D "n � "n�j is the frequency of the emitted

photons. The emission frequency at the j th harmonic is approximated by ! D
j˝e , due to only the lowest order terms in B=Bc being retained in (6.2.20), with
."n � "n�j /=m D j.B=Bc/ to this order.

For spin-flip transitions, s D 1; s0 D �1, (6.2.20) is replaced by

Rsf
n!n�j D 2Rnsf

n!n�j
n � j

�!
m

	2 � B
Bc


�1
; r sf

n!n�j D � j

j C 1
; (6.2.21)

with l D n � 1 in this case. The rate (6.2.21) for the spin-flip transition is smaller
than the rates (6.2.20) for the non-spin-flip transition by B=Bc � 1. The rate for
the reverse spin-flip transition, s D �1; s0 D 1, is smaller than the rate for the direct
spin-flip transition by a further factor of order .B=Bc/2, and is neglected here.

The results (6.2.20) and (6.2.21) imply that for nonrelativistic electrons initially
in a high Landau level in a field with B=Bc � 1, the branching ratio for jumps
involving a j th-harmonic transition (j � 2) with no spin flip depends on the
.jC1/th power of B=Bc , and a transition with spin flip (s D 1; s0 D �1) is
higher than that without spin flip by an extra factor of order B=Bc . Hence, the most
probable sequence of transitions for B=Bc � 1 is that the electron jumps stepwise
down the ladder to l D 0. That is, the most probable sequence of transitions is
a sequence with j D 1 for each transition and with no spin flip. For an electron
initially with s D �1, the level l D 0 is the ground state, n D 0. For an electron
with s D 1, the likelihood of a spin-flip transition is low until it reaches l D 0 (n D 1

in this case), where it remains until it jumps to n D 0 by a spin-flip transition. The
probability of a reverse spin flip (s D �1; s0 D 1) is negligible in the cyclotron
approximation.

In the cyclotron approximation, retaining only the electric-dipole transition, the
rate of change in the energy and parallel momentum, cf. (6.2.5), reduce to

d"n

dt
D �4˛cm

2

3

�
B

Bc


3
l;

dpz

dt
D 0; (6.2.22)
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with n D l C 1
2
.1 C s/. It follows from (6.2.22) with "n D m C .p2n C p2z /=2m

that in the nonrelativistic limit the energy radiated comes from a decrease in pn at
fixed pz.

For j D 1 and with the approximation ! D ˝e, (6.2.20) and (6.2.21) gives
(in ordinary units)

Rnsf
1!0 D 4˛cmc

2

3„
�
B

Bc


2
; Rsf

1!0 D Rnsf
1!0

B

Bc
: (6.2.23)

For typical strong fields available in the laboratory, say several tesla, one has
B=Bc � 10�9, and the lifetime (1=Rnsf

1!0) of an electron in the first excited state
is tens of minutes. For typical pulsar fields, B=Bc � 0:1, the lifetime is extremely
short, and all the electrons are expected to be in their ground states.

The foregoing discussion of spin-flip and non-spin-flip transitions assumes
that the spin operator is the magnetic-moment operator. Suppose one chooses the
helicity eigenfunctions (5.2.6) rather than the magnetic-moment eigenfunctions.
For a nonrelativistic electron, the helicity eigenfunction � D 1 is a mixture of the
s D 1, sD � 1 states in the ratio cos˛n=2 W sin ˛n=2, where ˛n is the counterpart
of the classical pitch angle: pn=.p2n C p2z /

1=2 D sin ˛n, pz=.p
2
n C p2z /

1=2 D cos˛n.
As an electron radiates, n decreases, and hence pn decreases, whereas pz remains
constant in the nonrelativistic approximation. Hence ˛n decreases as a result of
the gyromagnetic emission. Suppose that there is no spin-flip in s, and that in a
sequence of electric-dipole transitions pn decreases at fixed s. The linear relation
between the �- and s-states is a function of pn=pz and hence as pn changes, the
mixture of � states changes. Such a change in � should not be interpreted as a spin
flip. ‘Spin flip’ should be used only to mean a change in the eigenvalue, s, of the
magnetic-moment operator.

6.2.3 Cyclotron Emission and Absorption Coefficients

The gyromagnetic emission and absorption coefficients, (6.1.35) and (6.1.36)
respectively, become cyclotron emission and absorption coefficients when the
cyclotron approximation is made to them. Three separate approximations are
involved. The approximation to the vertex function is straightforward, using (6.2.6)
and (6.2.7). The simplest approximation to the resonance condition implies pz D
m.! � j˝e/=kz. With these approximations, (6.1.35) and (6.1.36) are replaced by

ˇM .k/ D nn.pz/ eB�0e
2m
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/2.j 2˝2
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(6.2.24)
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respectively, with pzj D m.! � j˝e/=kz, p0
zj D pzj � kz. The quantum recoil is

included simply by replacing pzj by pzj D .m=kz/Œ! � j˝e C .!2 � k2z /=2m�.

Bi-Maxwellian Distribution

By way of illustration, consider the emission and absorption coefficients (6.2.24)
for a bi-Maxwellian distribution, which is a nondegenerate, thermal-like distribution
with different temperatures, Tk and T?, parallel and perpendicular to the magnetic
field, respectively. The occupation number for such a distribution is

nn.pz/ D Ae�na�p2z =2mTk ; A D .2
/3=2neBc

Bm3.Tk=m/1=2
tanh.a=2/; (6.2.25)

with a D .m=T?/.B=Bc/. The emission and absorption coefficients follow
from (6.2.24) simply by interpreting nn.pzj /, nn.pzj / � nn.p

0
zj /, in terms of

the distribution function (6.2.25). The emission coefficient then contains a factor
expŒ�m.!�j˝e/

2=k2z Tk� that determines the line profile, at the j th harmonic. The
Doppler width is of order jkzj.Tk=m/1=2. In the denominator, one may make the
approximation .j 2˝2

e � !2 C k2z /
1=2 
 jkzj.

Near threshold, both solutions pṅn0=m 
 j˝ekz=.!
2 � k2z / ˙ !gnn0 , need

to be included. The foregoing treatment breaks down for k2z =2!�<j! � j˝ej �
jkzj.Tk=m/1=2, which corresponds to a small range of angles about perpendicular
propagation; emission for kz ! 0 is possible only at ! < j˝e . In this range the two
solutions may be approximated by p˙

nn0=m 
 kz=! ˙ Œ2.j˝e � !/=!�1=2. In the
denominator, one may make the approximation .j 2˝2

e �!2Ck2z /
1=2 
 Œ2!.j˝e �

!/�1=2. The case where two nonrelativistic solutions need to be included is the
counterpart of the case where the nonquantum resonance condition corresponds to
a resonance ellipse that is approximately circular near the origin, as illustrated in
Fig. 4.1.

6.3 Quantum Theory of Synchrotron Emission

The quantum theory of synchrotron emission differs from its nonquantum counter-
part (� 4.4) in relatively minor ways. The central assumptions are that the resonance
condition is approximated by assuming that the particles are highly relativistic and
that the transition involves very high harmonics such that the harmonic number,
n�n0, is treated as a continuous variable. In the nonquantum theory the assumptions
justify an Airy-integral approximation to the Bessel functions that appear in the
theory, and in the quantum case then justify an Airy-integral approximation to
the J -functions. The intrinsically quantum modifications to synchrotron emission
discussed here are the quantum recoil, which is important when an emitted
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photon carries away a large fraction of the initial energy of the electron, quantum
fluctuations in the orbit of the radiating electron, the effect of synchrotron emission
on the spin of the electrons, and effects associated with superstrong fields.

6.3.1 Quantum Synchrotron Parameter

In the classical theory of synchrotron emission, the frequency dependence is de-
scribed by a parameterR D !=!c, with the characteristic frequency of synchrotron
emission given by (4.4.2). The quantum treatment involves a parameter � introduced
by writing the definition (4.4.2) in the form (ordinary units)

!c D 3˝e�
2 sin ˛

2m
D �.mc2=„/�?; � D 3B�?

2Bc
: (6.3.1)

It is convenient to develop the quantum theory of synchrotron emission in the frame
in which the initial electron has no motion along the field lines, pz D 0. The initial
energy of the electron is then "n D "0n D mc2�?; n is assumed large and continuous,
and is re-expressed in terms of �?. The suppression due to quantum effects is
significant when the final energy of the electron, "n0 
 mc2� 0?, is much smaller
than the initial energy, due to the energy of the photon being comparable with this
initial energy, „! � mc2�?. This is described by the parameter y, defined by

�y D „!
mc2�? � „! D „!

mc2� 0?
; (6.3.2)

such that the allowed range of frequencies corresponds to 0 < y < 1. The
recoil implies that, in the frame pz D 0, the final momentum is p0

z D �„kz D
�.„!=c/ cos � , which needs to be included in the detailed theory but which is
unimportant in the definition (6.3.2). The suppression of synchrotron emission
at high frequencies due to quantum effects is characterized by the product of
parameters, �y. To lowest order in the expansion in small parameters, �y is related
to the initial and final quantum numbers by

p
np
n0 D 1C �y; (6.3.3)

such that one has

„!
mc2� 0?

D
p
n � p

n0
p
n0 D �y;

„!
mc2�?

D
p
n � p

n0
p
n

D �y

1C �y
: (6.3.4)

The classical limit applies for �y � 1, and the extreme quantum limit corresponds
to �y 	 1.
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Sum over Final States

Reverting to natural units, the probability of synchrotron emission follows from
the probability (6.2.1) for gyromagnetic emission (with � D �0 D 1) when one
assumes highly relativistic electrons and makes relevant approximations to the
vertex function. For emission in vacuo one has RM.k/ ! 1=2, !M.k/ ! !,
and there are two transverse states of polarization for the photons. Complete
information on the polarization is retained by writing the probability as a (second-
rank) polarization tensor which spans the two transverse components. In describing
the emitting electron, the quantum numbers of the initial state are n; pz; s. The
parameter n is written in terms of the Lorentz factor, �? D "0n=m, of the
perpendicular motion, with pz D 0 by choice of frame.

The rate at which transitions occur, which is the rate at which photons are
emitted, is found by summing over the density of final states. For the electron this
involves an integral over p0

z, which is performed implicitly in using the probability
(6.2.1), and sums over n0; s0. The sum over n0 is replaced by an integral which is
performed over the ı-function in (6.2.1). One has

Z
dn0ı."n � "n0 � !/ D "n0

eB
D "n � !

eB
D m�?

eB

1

1C �y
: (6.3.5)

There are four possible transitions for the spin states, s D ˙1, s0 D ˙1, and the
transition rates for all four are different. The integral over the density of final states
for the photon is written (natural units)

Z
d3k
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/3
! 2
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0
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;

and the integral over ! may be rewritten using (6.3.2):

Z m�?

0

d! D �m�?
Z 1
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.1C �y/2
; ! D m�?

�y

1C �y
: (6.3.6)

6.3.2 Synchrotron Approximation

The synchrotron approximation in quantum theory is analogous to the nonquantum
theory in that the harmonic number is assumed large and continuous.

Synchrotron Approximation to the Resonance Condition

As in the nonquantum case, important properties of synchrotron emission may
be inferred from the resonance condition by appealing to known relativistic
effects, simplified by choosing the frame pz D 0. Rather than use the quantum



6.3 Quantum Theory of Synchrotron Emission 275

gyroresonance condition in the standard form (6.1.7), it is more convenient to use
the form pz D pṅn0 , given by (6.1.18), so that the resonance condition becomes
Œpṅn0 �

2 D 0 in the frame pz D 0. Assuming emission in vacuo, the resonance
condition in this form implies

g2nn0 D f 2
nn0 cos2 �; (6.3.7)

with fnn0 , g2nn0 given by (6.1.16) and (6.1.17), respectively. The assumption of
emission in vacuo implies !2 � k2z D k2?, so that one may write !2 � k2z D 2eBx.
Then (6.1.16) and (6.1.17) give

fnn0 D .xCx�/1=2 C x

2x
; g2nn0 
 .x � x�/.x � xC/

4x2
; x˙ D .

p
n˙ p

n0/2;
(6.3.8)

where ."0n ˙ "0n0/
2 in (6.1.17) is expanded in m2=p2n D 1=�2?, m2=p2n0 D 1=� 02? ,

and only the leading term is retained. The frame pz D 0 corresponds to pitch angle
˛ D 
=2, and the property that the emission is confined to a small range of angles
about � D ˛ implies that cos2 � 
 .��
=2/2 is of order 1=�2?. This implies that the
right hand side of (6.3.7) is of order 1=�2?, so that the left hand side must be of the
same order. To lowest order this requires x D x�. In the synchrotron approximation
one sets x D x� except where the difference x � x� appears explicitly. Thus the
lowest order resonance condition for synchrotron emission becomes x D x�, or
!2 D .pn � pn0/2.

The difference x � x� is negative, and it is more convenient to express the
difference in terms of the positive quantity 1 � x=x�. There are two contributions
from the resonance condition in the form (6.3.7). One is from the exact form for
g2nn0 , given by (6.1.17), where !2�k2z �."0n�"0n0/

2 is approximated by 2eB.x�x�/
to lowest order. Retaining the next order terms gives

!2 � k2z � ."0n � "0n0/
2 
 2eB

�
x � x�

�
1 � m2

pnpn0


�
: (6.3.9)

The other contribution comes from the term proportional to cos2 � in (6.3.7). The
resulting expansion gives

1 � x

x�
D
r
n

n0
1

�2
;

1

�2
D 1

�2?
C cos2 �: (6.3.10)

The correction (6.3.10 ) appears explicitly in the Airy-integral approximation to the
function J n� .x/. In an arbitrary frame, with pz ¤ 0, the parameter cos2 � in (6.3.10)
may be reinterpreted as .� � ˛/2 in the frame in which the pitch angle is ˛.
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Airy-Integral Approximation to J n
� .x/

The synchrotron approximation to the functions J n� .x/ is based on an Airy-integral
approximation [10, 19, 20]. Some details of a derivation of this approximation
are summarized in Appendix J. In brief, the function u D J n

0

n�n0.x/ satisfies the
differential equation

d2.x1=2u/

dx2
� 	.x/ .x1=2u/ D 0; (6.3.11)

	.x/ D .x � x�/.x � xC/
4x2

; x˙ D
�q

nC 1
2

˙
q
n0 C 1

2


2
: (6.3.12)

In the synchrotron limit one has n; n0 	 1, so that the terms 1
2

are negligible, giving
	.x/ ! .x � x�/.x � xC/=4x2, which implies 	.x/ ! gnn0 in view of (6.1.20).
Airy’s differential equation and its relevant solution are

d2w.z/

d z2
� zw.z/ D 0; w.z/ D Ai .z/ D 1




� z

3

	1=2
K1=3.�/; � D 2

3
z3=2:

(6.3.13)

The differential equation (6.3.11) is transformed into the differential equation
(6.3.13) by writing

� D 2
3
z3=2 D

Z x�

x

dx0Œ	.x0/�1=2; �0 D z1=2z0 D �Œ	.x/�1=2; (6.3.14)

where the prime denotes a derivative with respect to x, and with the second
derivative, z00, neglected. In (6.3.14) one makes the approximation 	.x/ 
 .x �
x�/.x� � xC/=4x2�, and the integral is then elementary. One finds

� D 2
3
.nn0/1=4x1=2�

�
1 � x

x�


3=2
; �0 D � .nn0/1=4

x1=2�

�
1 � x

x�


1=2
: (6.3.15)

A normalization constant is determined by considering the limit x ! 0 [20]. The
resulting Airy-integral approximation is

J n
0

n�n0.x/ D 1



p
3

�
1 � x

x�


1=2
K1=3.�/; (6.3.16)

which applies for x < x� D .
p
n � p

n0/2. The corresponding result for
dJ n

0

n�n0.x/=dx is also needed. This follows from (6.3.16) using the identity

d

d�
Œ�1=3K1=3.�/� D ��1=3K2=3.�/; (6.3.17)
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which implies

d

dx
J n

0

n�n0.x/ D ��0 1



p
3

�
1 � x

x�


1=2
K2=3.�/; (6.3.18)

with �0 given by (6.3.15).
Four specific J -functions are required to treat gyromagnetic emission: J nn�n0.x/,

J n�1
n�n0.x/, J nn�n0C1.x/, J n�1

n�n0�1.x/. The other three are related to J n
0

n�n0.x/ using the
properties of the J -functions given in Appendix J, specifically,

J n�1
n0�n.x/ D x

.nn0/1=2

�
n0 C n � x

2x
J nn0�n.x/ � d

dx
J nn0�n.x/

�
;

J nn0�n�1.x/ D
� x
n0
	1=2 �n0 � nC x

2x
J nn0�n.x/C d

dx
J nn0�n.x/

�
;

J n�1
n0�nC1.x/ D

�x
n

	1=2 �n0 � n � x

2x
J nn0�n.x/ � d

dx
J nn0�n.x/

�
: (6.3.19)

In the Airy-integral approximation one sets x D x� except where 1�x=x� appears
explicitly. Hence, the coefficients in (6.3.19) are approximated by

n0 C n � x�
2.n0n/1=2

D 1;
n0 � nC x�
2.n0x�/1=2

D �1; n0 � n � x�
2.nx�/1=2

D �1: (6.3.20)

Thus the functions J n
n�n0.x/, J n�1

n�n0.x/, J nn�n0C1.x/, J
n�1
n�n0�1.x/ are all equal in

magnitude to a first approximation in the extreme relativistic limit, and only the
differences resulting from the terms involving the derivatives in (6.3.19) need be
retained in distinguishing between them. One finds

0
BB@

J nn0�n
J n�1
n0�n

J n
n0�n�1
J n�1
n0�nC1

1
CCA D .�/n0�n.1C �y/1=2



p
3 �

2
664

0
BB@

1

1

�1
�1

1
CCAK1=3 C

0
BB@

0

��y
1C �y

�1

1
CCA
K2=3

�

3
775 ;

(6.3.21)

where the argument x of the J -functions and � D .y=2/.�?=�/2 of the Macdonald
functions are omitted, with y defined by (6.3.1) and (6.3.3).

Approximation to the Vertex Function

The synchrotron approximation to the vertex function (5.4.18) involves the Airy-
integral approximations to the J -functions and appropriate approximations to the
parameters a˙, a0̇ , b˙s, b 0̇

s0 .
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For pz D 0, implying p0
z D �kz, the parameters a˙; a0̇ that appear in the vertex

function (5.4.18) reduce to

aC 
 1; a0C 
 1; a� 
 0; a0� 
 � 1
2
�y cos �: (6.3.22)

The leading approximations to the other parameters that appear in the vertex
function (5.4.18) are

b0
s0bs 
 1C 1

2�?
Œs C s0.1C �y/�: (6.3.23)

Combining these various approximations, the synchrotron approximation to the
space components of the vertex function (5.4.18) for pz D 0 becomes

�CC
qq0 .k/ D .�i/n�n0 .1C �y/1=2

2

p
3 �

(
1C s0s
2

�
2K1=3.z/;

i

�
�s

0�y
�?

K1=3.z/C .2C �y/
K2=3.z/

�



;�2�y cos � K1=3.z/

�

C1 � s0s
2

�
0;�is�y cos � K1=3.z/;C�y

�
s0

�?
K1=3.z/� K2=3.z/

�


�)
;

(6.3.24)

where only the lowest order terms are retained in an expansion in 1=�?, 1=�, cos � .
Denoting the space components of (6.3.24), by superscripts x; y; z, the two trans-
verse components correspond to � ?

s0s D Œ� CC
qq0 �

y.k/ and � k
s0s D cos �Œ� CC

qq0 �
x.k/ �

sin �Œ� CC
qq0 �

z.k/. Specifically, the transverse components are

�
?;k
s0s

D .�i/n�n0 .1C �y/1=2.1C t2/

2

p
3 �2?

�
?;k
s0s
; (6.3.25)

with t D �? cos � , �?=� D 1C t2, and with

�?
s0s D i

(
1
2
.1C s0s/

� � s0�y K1=3.z/C .2C �y/.1C t2/K2=3.z/
�

� 1
2
.1 � s0s/ �y t K1=3.z/

)
;

�
k
s0s D 1

2
.1C s0s/ .2C �y/ t K1=3.z/

C 1
2
.1 � s0s/ �y

�
s0K1=3.z/� .1C t2/K2=3.z/

�
: (6.3.26)



6.3 Quantum Theory of Synchrotron Emission 279

6.3.3 Transition Rate for Synchrotron Emission

Consider the rate of transitions,R?;k
s;s0 , between an initial state with quantum numbers

n; s; pz D 0, and final states n0; s0; p0
z D �kz due to synchrotron emission of photons

with ? and k polarizations. The initial state is described by the perpendicular
Lorentz factor, �?, and the sum over n0 is replaced by an integral. The rate follows
by integrating the probability (6.1.1) over the density of final states for the photon.
The integral over n0 is performed over the ı-function, as in (6.3.5), and the integral
over ! is replaced by an integral over y using (6.3.6). This gives transition rates

R
?;k
s0s

D 3�0e
2m

32
3
B

Bc

Z 1

0

dt .1C t2/2
Z 1

0

dy y

.1C �y/3
j�?;k
s0s

j2; (6.3.27)

with �?;k
s0s .k/ given by (6.3.26). The integrand in (6.3.27) is an even function of

cos � , and is dominated by the region cos ��<1=�?, allowing the integral over cos �
to be rewritten as two times the integral over t D �? cos � between 0 and 1.

The power emitted is found by including an extra factor of ! D m�2?�y=.1C�y/
in the integrand in (6.3.27):

P
?;k
s0s

D 9�0e
2m

64
3
B

Bc
m�2?

Z 1

0

dt .1C t2/2
Z 1

0

dy y2

.1C �y/4
j�?;k
s0s

j2: (6.3.28)

Integral Identities

The following integral identities involving Macdonald functions are required in
(6.3.27) or (6.3.28) [19]:

Z 1
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�Z 1
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dx K5=3.x/ �K2=3.y/

�
;

Z 1
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dt.1C t2/ŒK1=3.�/�
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Z 1
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dx K1=3.x/;

Z 1

0

dt.1C t2/3=2K1=3.�/K2=3.�/ D 
p
3 y

K1=3.y/; (6.3.29)

with � D 1
2
y.1C t2/3=2, and where the identity

Z 1

y

dx K1=3.x/ D �
Z 1

y

dx K5=3.x/C 2K2=3.y/; (6.3.30)

is used.
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Transition Rate and Power Emitted

The transition rate (6.3.27) becomes

R
?;k
s0s D

p
3�0e

2m

32
2
B

Bc

Z 1

0

dy

.1C �y/3
G

?;k
s0s ; (6.3.31)

the power radiated (6.3.28) becomes
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2m2�2?
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.1C �y/4
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; (6.3.32)

and the integral identities (6.3.29) imply

G?
s0s D 1

2
.1C s0s/

�
1C 1

2
�y
�2 �Z 1

y

dx K5=3.x/ �K2=3.y/

�
C 1

2
.1 � s0s/

�2y2

4

�
�Z 1

y

dx K5=3.x/CK2=3.y/C 2

Z 1

y

dx K1=3.x/C 2sK1=3.y/

�
;

G
k
s0s D 1

2
.1C s0s/


 �
1C 1

2
�y
�2 �Z 1

y

dx K5=3.x/CK2=3.y/
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dx K5=3.x/ �K2=3.y/

�
: (6.3.33)

The rate of transitions per unit frequency and the power per unit frequency follow
from (6.3.31) and (6.3.32), respectively, by omitting the integral and using (6.3.6)
to write dy D d! .1C �y/=m�?�y.

Power Emitted for Unpolarized Electrons

When the polarization of the electrons is of no interest, one averages over the initial
spin, s, and sums over the final spin, s0. Denoting the resulting quantities by an
overbar:R?;k

s0s ! NR?;k, P?;k
s0s ! NP?;k, G?;k

s0s ! NG?;k. The spin-average of (6.3.33)
gives

NG?;k D .1C �y/

�Z 1

y

dx K5=3.x/C �2y2

1C �y
K2=3.y/

�
�K2=3.y/: (6.3.34)



6.3 Quantum Theory of Synchrotron Emission 281

Fig. 6.3 Comparison of the quantum theory of synchrotron radiation for a spinless electron (1) and
a spin-half electron (2) with the nonquantum theory (3) for two different values of the parameter
�B=Bc (From [11], reprinted with permission AAS)

On summing over the two states of polarization of the photon, the spin-averages of
(6.3.27) and (6.3.28) give the total transition rate and power radiated, respectively:

NR D
p
3�0e

2m

32
2
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Bc

Z 1

0
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.1C �y/2

�Z 1

y

dx K5=3.x/C �2y2
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(6.3.35)

NP D 3
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3�0e

2m2�2?
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Z 1
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dy y

.1C �y/3

�Z 1

y

dx K5=3.x/C �2y2

1C �y
K2=3.y/

�
:

(6.3.36)

The final term in (6.3.35) or in (6.3.36) is associated with the spin, in the
sense that this term is absent when the theory is developed for spinless particles
[20]. Its effect is illustrated in Fig. 6.3, where three cases are compared [11]: the
curve labeled 2 corresponds to the quantum theory of synchrotron emission by an
unpolarized electron, the curve labeled 3 corresponds to the nonquantum theory,
and the curve labeled 1 corresponds to a spinless particle. The dashed curve is
calculated using a model based on the Klein-Nishina cross-section for scattering
virtual photons [11]. Comparing the quantum, �y�>1, and nonquantum, �y ! 0,
limits there are three notable differences. The first is an overall suppression for
the quantum case compared with the nonquantum limit, showing that the quantum
mechanical suppression is large only when the particle loses a large fraction of its
energy in the emission of a single photon. The second concerns the final term inside
the square brackets in (6.3.36), which is absent for �y ! 0. The coefficient of this
term is �2y2=.1 C �y/ D !2=m2�?� 0

?, implying that the synchrotron spectrum
differs substantially from its nonquantum counterpart for !2 � m2�?� 0

?. A third
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difference is in the parameter y D 2m!=eB�?� 0?, which is larger in the quantum
case compared with the nonquantum case. These differences are substantial only as
the quantum mechanical cutoff ! ! m�?; � 0? ! 0 is approached.

The power radiated (6.3.36), may be compared with the nonquantum limit,
�y� 1, by expanding the integrand in powers of �y and integrating over y using
the integral

Z 1

0

dy yq�1Kp.y/ D 2q�1�
�q � p

2

	
�

�
q C p

2



: (6.3.37)

The expansion to order .�y/2 was evaluated by Sokolov and Ternov [20], who also
evaluated the power in the extreme quantum limit, �y 	 1, finding

P D Pcl

8̂
ˆ̂<
ˆ̂̂:

1 � 55
p
3

24
� C 56

3
�2 C 8

3
�2 for � � 1;

28=3� .2=3/

9�4=3
for � 	 1;

(6.3.38)

respectively, where Pcl is the power in the nonquantum limit. The final term,
8�2=3, arises from the final term in (6.3.36), and is the contribution from spin-flip
transitions.

6.3.4 Change in the Spin During Synchrotron Emission

The rate of transitions is different for the different spin states. Summing over the
two polarizations, and expanding the integrand to second order in �y, evaluation of
the resulting integrals using (6.3.37) gives [20]
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)
: (6.3.39)

The final term in (6.3.39) describes the spin flips, and implies that the ratio of the
rate of direct spin flips, s D 1 ! s0 D �1, to the rate of reverse spin flips, s D
�1 ! s0 D 1, is .15C 8

p
3/=.15 � 8

p
3/. It follows that after an arbitrarily long

time, the occupation numbers for electrons in the states s D ˙1 approach the ratio

n�
nC

! 15C 8
p
3

15� 8
p
3
: (6.3.40)
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This corresponds to 96 % of the electrons in the state s D �1. Sokolov and
Ternov [19] showed that this limit is approached exponentially, / exp.�t=�/, on
a timescale (in SI units)

��1
spin D 5

p
3

8

e2mc

4
�0„2 �
2?
�
B

Bc


3

 1027 s�1�2?

�
B
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3
: (6.3.41)

It is relevant to compare this time with the classical synchrotron half-lifetime, �" D
mc2�?=Pcl in ordinary units. One has

�"

�spin
D 15

p
3

16
�?
�
B
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D 5

p
3

8
�; (6.3.42)

with � given by (6.3.1). It follows that for � 	 1 the alignment of the spins in the
state s D �1 occurs before the electron radiates away a significant fraction of it
energy. Alignment of the spins does not have time to occur for � � 1.

6.3.5 Gyromagnetic Emission in Supercritical Fields

Gyromagnetic emission for B=Bc�>1 is qualitatively different from both the cy-
clotron and synchrotron cases. For gyromagnetic emission to be possible the
electron (or positron) must be in a state n � 1, and for B=Bc 	 1, this implies that
it is highly relativistic. However, the synchrotron approximation requires not only
that the particles be highly relativistic but also that the quantum numbers n; n0 be
large enough to be treated as continuous variables. The latter conditions require n 

�2?Bc=2B 	 1, n0 
 � 02?Bc=2B 	 1. However, for B 	 Bc , there is a range of
�? where the particles are highly relativistic for small n. In this case, gyromagnetic
emission must be treated in terms of transitions, n ! n0, between discrete levels.
In this sense the emission is more closely analogous to cyclotron emission than to
synchrotron emission. However, an important simplifying approximation used in
treating cyclotron emission does not apply: the argument, x, of the J -functions is
not necessarily small. Explicit expressions for J n� .x/ for n D 0; 1; 2; 3 are written
down in (A.1.47)–(A.1.50) in Appendix A.1.5. These functions are of the form
x�=2e�x=2 times a polynomial in x of order n. In contrast with the cyclotron case,
where the transition rates for transitions n � n0 > 1 and those with a spin flip are
smaller that the transition rate n ! n0 D n � 1 without a spin flip by a power of
B=Bc for B=Bc � 1, all these transition rates become comparable for B=Bc�>1.

The exact value of the frequency of emission in vacuo for pz D 0 in an arbitrary
transition n ! n0 is !nn0.�/, given by (6.2.14). In the cyclotron limit one expands
the square roots in (6.2.14) assuming 2eB � m2, giving !nn0.�/ 
 .n � n0/˝e ,
˝e D eB=m, In the relativistic case, neglecting the terms m2, (6.2.14) gives

!nn0.�/ D .2eB/1=2

sin2 �

�
n1=2 � .n cos2 � C n0 sin2 �/1=2

�
: (6.3.43)
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In the synchrotron limit, relativistic beaming implies cos2 � � 1 and (6.3.43) gives
!nn0.�/ 
 .2eB/1=2.

p
n � p

n0/, corresponding to the synchrotron approximation
x 
 x�. The synchrotron approximation is not valid for n0 � n, specifically for
n0 sin2 � � n cos2 � , when (6.3.43) gives !nn0.�/ 
 .2neB/1=2=.1C j cos � j/.

A specific case that has been treated in detail is for transitions from large n to
n0 � n [5, 21, 28]. In this case, the emission is concentrated around � D 
=2,
and the frequency (6.2.14) becomes !n0.
=2/ 
 .2eB/1=2

p
n, corresponding to a

photon energy approximately equal to the initial electron energy. Such transitions
have been treated using both the exact wave functions [28], and using a parabolic
cylinder approximation to the J -functions [21]. The rate of transitions for n0 D 0 is
[21], in ordinary units,

R0n D ˛cm
2c4

2„"
B

Bc
e�Bc=B ; (6.3.44)

with the initial energy given by " 
 .2neB„c2/1=2. The inverse process in which a
photon is absorbed by an electron at rest with excitation to n 	 1 has a cross-section

�n0 D 2
3=2˛c„
m!

�
Bc

B


1=2
e�Bc=B: (6.3.45)

The cross section, which has a maximum at B D 2Bc , can be substantially larger
than the Thomson cross section.

Quantum Broadening

A more subtle quantum effect is related to spatial diffusion across the field lines.
The description of such diffusion is gauge dependent: diffusion along the x-axis
may be described using the Landau gauge (5.1.13) and radial diffusion away from
a central field line may be described using the cylindrical gauge (5.1.14). In the
Landau gauge, emission of a photon with given ky implies a jump in the center of
gyration of�x D „ky=eB . The mean square displacement of the center of gyration
increases at a rate d h.�x/2i=dt � PNph.„ky=eB/2. In the cylindrical gauge, the
radial position is described by a discrete radial quantum number, defined by (5.2.26),
and an analogous dispersion occurs in this parameter. A semi-classical description
is based on the quasilinear approximation, in which the motion is assumed to be
a classical spiraling along a field line. This diffusive process is referred to as a
quantum broadening of the classical orbit [16]. In the Landau gauge, assuming
ky 
 h!i=c with h!i the mean frequency of synchrotron emission near the peak of
the classical spectrum, the gyrocenter jumps a fraction 
 .B=Bc/� of a gyroradius
each time a photon is emitted. In the cylindrical gauge, the condition is that the
emission of such a photon causes the radial quantum number to change by unity
implies [16]

n�>.Bc=B/5; " 
 mc2.Bc=B/
5=2: (6.3.46)

This broadening effect has been confirmed experimentally [5, 20].
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6.4 One-Photon Pair Creation

One-photon pair creation and annihilation are allowed in a magnetized vacuum
[6, 10, 23, 24]. Pair creation and annihilation are related to gyromagnetic emission
by crossing symmetries; they are described by the probability (6.1.1) for �D � 1;

�0 D 1. The analogy between one-photon pair creation and gyromagnetic emission
is relatively close. For a nonrelativistic pair the analogy is with cyclotron emission
[27], and for an extremely relativistic pair the analogy is with synchrotron emission.
The photon involved is necessarily of high energy, ! > 2m, and the effect of an
ambient plasma on the dispersion of the photons is usually negligible. Birefringence
due to the magnetized vacuum can play a significant role, due to perpendicular and
parallel polarized photons annihilating into pairs with different quantum numbers.

One-photon pair creation plays a central role in the theory of pulsar mag-
netospheres [22]. In this context, it was explored in detail during the 1980s,
[1, 3, 4, 7, 9, 29, 32] (see [8] for a more recent review on this topic). Although early
treatments of one-photon pair creation emphasized the ultrarelativistic limit, there is
a strong argument that the nonrelativistic approximation is more relevant for pulsars.
The reason is that the photons are assumed to be emitted nearly along curved field
lines, at a very small initial angle, � , with sin � increasing with distance due to
this curvature. Pair creation becomes possible for given n; n0 when the threshold
! sin � > "0n C "0n0 is reached, and the absorption coefficient is singular at each
threshold. Decay into a relativistic pair is possible only if the effective optical depth
for absorption at low harmonics is small and that at high harmonics is of order unity
or larger [27]. This condition is not satisfied for B=Bc �>0:1 [27]. A different effect,
that may prevent the photons reaching the range ! sin � 	 2m where they can
decay into a relativistic pair, is that the photon may evolve into a bound pair (� 6.5).

6.4.1 Probability of Pair Creation and Decay

The probability of pair creation or decay follows from (6.2.1) by setting � D 1,
�0 D �1:

w�C
Mqq0.k/ D �0e

2RM.k/

j!M.k/j
ˇ̌
e�
M�.k/Œ�

�C
q0q

.k/��
ˇ̌2
2
ı

�
"q C "q0 � !M .k/

�
: (6.4.1)

As already remarked, in most cases of interest the wave dispersion can be neglected
(RM.k/ ! 1

2
, !M.k/ ! ! D jkj) and the weak anisotropy limit applies with the

polarization restricted to the transverse plane.
The absorption coefficient follows from the probability by summing over the

final states. The sum over final states, q; q0, includes sums over the discrete
quantum numbers, n; s; n0; s0, and integrals over pz; p

0
z. As noted in connection

with the definition (5.6.12) of the probability, the integral over .VeB=2
/.dp0
z=2
/



286 6 Quantum Theory of Gyromagnetic Processes

0 20 40 60 80
0

20

40

60

80

n’

n

Fig. 6.4 The threshold
condition for pair creation is
plotted for
.!2 � k2z /

1=2 D 10m,
B D 0:5Bc . The allowed
integral values of n; n0 are
below the curve, and the
threshold for a given n; n0

corresponds to the point lying
on the curve, which is
x2

C
D .

p
nC p

n0/2 D 81

in this case (After [4])

is performed over a ı-function, that is omitted from the probability, specifically
over .2
=VeB/ 2
ı.p0

z C pz � kz/ here. The factor V in the integral over
.VeB=2
/.dpz=2
/ is incorporated in the definition of the probability, and is
omitted in the sum over final state q.

In treating pair creation it is often convenient to transform to the frame kz D 0,
in which the photon is propagating perpendicular to the magnetic field lines. This
frame plays a role analogous to the frame with pz D 0 in the case of gyromagnetic
emission. In the frame kz D 0, the parallel momenta of the electron and positron are
equal and opposite. The resonance condition in the form (6.1.18) implies that the
parallel momenta are given by jpṅn0 j D !gnn0 . The threshold condition corresponds
to gnn0 D 0, and pair creation is possible only above threshold, ! � "0n C "0n0 .
For given !, B=Bc , this condition restricts the values of n; n0. For example, for
n0 D 0 the restriction implies n � .!=m � 1/2Bc=2B . The restriction is illustrated
in Fig. 6.4, in an arbitrary frame (! ! .!2 � k2z /

1=2), for values such that for
n0 D 0 the maximum is n D 81. A detailed investigation [4] leads to the following
semi-quantitative conclusions for large n C n0: the most probable transitions are
for n; n0 near the boundary of the allowed region, the number of states n; n0 within
the boundary is of order Nstates.!;B/ 
 8!.! C 4m/.! � 2m/2B2

c =3m
4B2, and

the photon energy tends to be shared roughly equally by the electron and positron
(n � n0) for B � Bc , but unequally (n 	 n0 or n0 	 n) for B �>Bc .

Rate of Pair Creation

The rate of pair creation corresponds to the absorption coefficient (per unit time)
for the photons. It may be obtained directly by summing the probability (6.4.1), or
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from the kinetic equation (6.1.30). In the latter case, provided that the number of
pairs is well below the degeneracy limit, the occupation numbers of the pairs may
be neglected in (6.1.30), which then reproduces the result obtained directly from
(6.4.1). The resulting expression for the rate of production of pairs with quantum
numbers q D n; s, q0 D n0; s0 through decay of a photon in modeM is

RMq0q D eB

2


Z
dpz

2

w�C
Mqq0.k/: (6.4.2)

The integral over pz is carried out over the ı-function, and (6.4.2) gives

RMq0q D �0e
3B




RM.k/

!M .k/

ˇ̌
e�
M�.k/Œ�

�C
q0q .k/�

�
ˇ̌2

!2M .k/ � k2z
"n0"n

gnn0

; (6.4.3)

where pz; p
0
z; "n; "n0 are to be evaluated at the ˙- solutions (6.1.18), (6.1.20), and

with gnn0 given by (6.1.17). An extra factor of 2 is included in (6.4.3) to take account
of equal contributions from the two solutions,pz D pṅn0 , of the resonance condition.

The rate of pair production for photons in the mode M may also be interpreted
as the absorption coefficient for waves in the modeM due to pair creation. The rate
(6.4.3) may be calculated using the expression (3.1.27) for the absorption coefficient
with the antihermitian part of the response tensor given by the general form (9.2.1),
which includes contributions from both the vacuum and the electron gas. Only the
contribution of the vacuum is included in (6.4.3).

One is usually justified in assuming that the wave dispersion is that of the vacuum
(!M.k/ ! ! D jkj, RM.k/ ! 1=2), and that the two modes (M !?; k) of the
birefringent vacuum have polarization vectors e? D a, ek D t . The projections
onto the polarization vectors is particularly simple in the frame in which the photon
is propagating along the x-axis (kz D 0,  D 0), when e?, ek are along the y-
and z-axes, respectively. In this frame the only relevant components of the vertex
function are

� ?
q0q D Œ� �C

q0q .k/�
y ; �

k
q0q D Œ� �C

q0q .k/�
z: (6.4.4)

The rate (6.4.3) becomes

R
?;k
q0q D �0e

2m2

2
!3
B

Bc

"n0"n

gnn0

j� ?;k
q0q j2; (6.4.5)

with p0
z D �pz for kz D 0, and with �

?;k
q0q

given by (6.4.4). It is usually
convenient to calculate the transition rate in the frame kz D 0 and to make a
Lorentz transformation to an arbitrary frame with kz ¤ 0. The rate transforms like a
frequency, as is apparent from the quantities on the right hand side of (6.4.3) which
are invariants except for "0

n0; "n; gn0n which all transform as frequencies. Hence,

denoting a quantity in the frame kz D 0 by a tilde, with QR?;k
q0q .!/ given by (6.4.5),
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with the frequency dependence made explicit, the decay rate in an arbitrary frame
is R?;k

q0q .!/ D sin � QR?;k
q0q .! sin �/.

When the dispersion is assumed to be that of the vacuum, the threshold condition
!2 � k2z > ."0n C "0n0/

2 becomes k2? > ."0n C "0n0/
2, and hence

x D k2?
2eB

>
."0n C "0n0/

2

2eB
: (6.4.6)

The lowest threshold at n D n0 D 0, (6.4.6) requires x > .B=Bc/�1. It follows that
for weak fields, B � Bc , large x is required for pair creation, and that pair creation
is compatible with small x only for supercritical fields, B 	 Bc .

6.4.2 Rate of Pair Production Near Threshold

The rate at which photons decay into pairs has singularities at the threshold, ! D
"0n C "0n0 for creation of a pair with quantum numbers n; n0 and pz D �p0

z D 0

(in the frame kz D 0). This is illustrated in Fig. 6.4. The (square-root) singularities
correspond to the zeros of gnn0 in (6.4.5), and may be regarded as the counterparts
for pair creation of the quantum oscillations in gyromagnetic emission, illustrated
in Fig. 6.2. Another notable feature in Fig. 6.4 is that the lowest threshold for the
parallel and perpendicular polarizations are different. These features may be treated
by approximating the rate by its form near each threshold, with the total absorption
coefficient found by summing over all values of n; n0 and s; s0.

The relevant components of the vertex function are

� ?
q0q D �is0.i/n�n0

.a0
s0a�s C a0�s0as/ .b0�s0bsJ n�1

n0�nC1 � s0sb0
s0b�sJ nn0�n�1/;

�
k
q0q

D .i/n�n0

.a0
s0as C a0

�s0a�s/ .b0
s0bsJ

n�1
n0�n C s0sb0

�s0b�sJ nn0�n/;

a˙ D
�
"n ˙ "0n
2"n


1=2
; b˙ D

�
"0n ˙m

2"0n


1=2
: (6.4.7)

At threshold one has pz D �p0
z D 0, and near threshold the small contributions

from pz D �p0
z ¤ 0 are neglected. In this approximation, the factors involving the

a˙ in (6.4.7) give

.a0
s0a�s C a0�s0as/2 
 1

2
.1 � s0s/; .a0

s0as C a0�s0a�s/2 
 1
2
.1C s0s/: (6.4.8)

It follows that only � ?
q0q contributes for s D �s0 and only� k

q0q contributes for s D s0.
The resulting approximations to the components (6.4.7) of the vertex function near
threshold give
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j� ?
q0qj2 D 1

2
.1 � s0s/ jb0

sbsJ
n�1
n0�nC1 C b0�sb�sJ nn0�n�1j2;

j� k
q0qj2 D 1

2
.1C s0s/ jb0

sbsJ
n�1
n0�n C b0�sb�sJ nn0�nj2; (6.4.9)

Near the threshold ! D "0nC"0n0 , the expression (6.1.17) for gnn0 in the denominator
in (6.4.5) may be approximated by

gnn0 D 1

!2

˚
"0n"

0
n0

�
!2 � ."0n C "0n0/

2
��1=2

: (6.4.10)

An approximation to the rate (6.4.5) is found by setting ! equal to its threshold
value, "0n C "0n0 , except in the expression (6.4.10) for gnn0 . The argument of the J -
functions is approximated by x D ."0n C "0n0/

2=2eB .
Most interest is in the lowest thresholds, corresponding to n D 0 and n0 D 0; 1.

(There is symmetry in the interchange of n; n0.) In both cases, the only J -function
required is J 00 .x/ D e�x=2. The rate (6.4.5) gives, for n D n0 D 0, (ordinary units)

R
k
000 D ˛cmc

2

„
B

Bc

mc2 e�2Bc=B

Œ.„!/2 � .2mc2/2�1=2
; (6.4.11)

and for n D 0; n0 D 1, (ordinary units)

R?
100 D ˛cmc

2

„
B

Bc

�
mc2

"01


1=2
mc2 e�.Bc=B/.1C"01=mc2/

Œ.„!/2 � .mc2 C "01/
2�1=2

; (6.4.12)

with "01 D mc2.1C 2B=Bc/
1=2.

6.4.3 Creation of Relativistic Pairs

When a photon with ! sin � 	 2m decays, the resulting pair is highly relativistic.
As for synchrotron emission, in the extreme relativistic limit one treats n; n0 as
continuous variables and makes an Airy integral approximation to the J -functions.

Synchrotron-Like Approximation

A detailed treatment of pair creation when the pairs are relativistic is similar to the
treatment of synchrotron emission. In the frame kz D 0, the analysis is similar to
that for synchrotron emission, with the important change being that in the expression
(6.1.18) for g2nn0 , one has x 
 xC, rather than x 
 x�, with x D !2=2eB and
x˙ D .

p
n˙p

n0/2. The relativistic approximation for pair creation involves setting
x D xC, except where the difference appears explicitly, when it is written in terms
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of x=xC�1, replacing the sums over n; n0 by integrals, and making the Airy-integral
approximation to the J -functions.

It is convenient to change the variables of integration from n; n0 to gnn0 , fnn0

and thence to hyperbolic functions of variables u;w. The hyperbolic functions
are introduced by writing pz D m sinh u and the difference over the sum of the
perpendicular momenta as tanh w, specifically,

gnn0 D m

!
sinh u;

p
n � p

n0
p
nC p

n0 D tanh w: (6.4.13)

In the explicit expression (6.1.16) for g2nn0 with kz D 0, one approximates "0n 

pn D !.n=x/1=2, "0n0 
 pn0 D !.n0=x/1=2, with x 
 xC, except in

!2 � ."0n C "0n0/
2 
 2eBxC

�
x

xC
� 1 � 4m2

!2
cosh2 w



; (6.4.14)

which follows by expanding in m2=p2n, m
2=p2n0 . The resulting approximation to

g2nn0 is

g2nn0 

p

nn0

.
p
nC p

n0/2

�
x

xC
� 1 � 4m2

!2
cosh2 w



: (6.4.15)

The approximate form (6.4.15) implies

x

xC
� 1 
 4m2

!2
cosh2 u cosh2 w: (6.4.16)

In the relativistic approximation to fnn0 D .n�n0 Cx/=2x it suffices to set x D xC,
ignoring the corrections of order .m=!/2:

fnn0 

p
np

nC p
n0 D 1

2
.1C tanh w/; fn0n 


p
n0

p
nC p

n0 D 1
2
.1 � tanh w/:

(6.4.17)

A fraction fnn0 of the photon energy goes into the electron, and the remaining
fraction fn0n D 1 � fnn0 goes into the positron.

The integrals over n; n0 may be rewritten as integrals over u;w. The Jacobian of
the transformation implies

dndn0

gnn0

D 1

2

�!
m

	3 �Bc
B


2
du dw

cosh u

cosh2 w
; (6.4.18)

with the range of integration restricted to u;w > 0. The upper limits of integration,
for n; n0 or u;w, are finite and large, and a standard approximation is to extend them
to infinity. Thus, after integrating over n; n0, the rate (6.4.5) becomes
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R
?;k
s0s

D �0e
2m


!2

Z
du dw

cosh u

cosh2 w
"n0"n j� ?;k

q0q
j2: (6.4.19)

The result (6.4.19) depends on the spins of the electron and positron. The total rate of
pair creation is found by summing over all four possible combinations s0; s D ˙1.

The restriction to u > 0 corresponds to pz > 0, and the restriction to w > 0

corresponds to n > n0. There is a symmetry in the interchange of the electron and
positron, such that the interpretation of the unprimed and primed quantum numbers
corresponding to the electron or positron is arbitrary. The right hand side of (6.4.19)
is an even function of u, and the contribution from negative u is taken into account by
including an extra factor of two in (6.4.19). The assumption w > 0 for the unprimed
particle implies that the particle with spin s has pn > pn0 . Thus, in formulae that
depend on the sign of s sinh w, s sinh w > 0 is interpreted as the particle with the
larger perpendicular momentum having spin up and s sinh w < 0 is interpreted as
the particle with the larger perpendicular momentum having spin down.

Airy-Integral Approximation

The derivation of the Airy-integral approximation relevant to one-photon pair
creation is analogous to the derivation of the Airy-integral (6.3.16) approximation
for synchrotron emission. The main change is that the relevant zero of 	.x/ D
.x � x�/.x � xC/=4x2 changes from x D x� to x D xC. The approximation for
x 
 xC D .

p
n C p

n0/2, with x � xC small and positive, leads to a Macdonald
functionK1=3.�/ with argument

� D 2
3
Œnn0x2C�1=4

�
x

xC
� 1


3=2
; �0 D

�p
n0n
xC

�
x

xC
� 1


�1=2
: (6.4.20)

The result (6.4.20) is the counterpart for pair creation of the result (6.3.15) for
synchrotron emission.

The Airy-integral approximation to the J -functions for pair creation is

J nn0�n.x/ D An0n K1=3.�/; An0n D .�/n0�n



p
3

2m

!
cosh u cosh w; (6.4.21)

where the argument, �, of the Macdonald functions is given by (6.4.20). It is
convenient to introduce the parameter � such that (6.4.20) becomes

� D 2

3�
cosh3 u cosh2 w; � D !

2m

B

Bc
: (6.4.22)
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The corresponding approximation to the derivative of the J -functions is derived
using (6.3.17) and �0 D .m=!/ cosh u:

d

dx
J nn0�n.x/ D �An0n

m

!
cosh uK2=3.�/: (6.4.23)

Approximations to the other J -functions that appear follow from (6.4.21) by using
the relations (6.3.19). In place of (6.3.20), for x ! xC one finds

n0 C n � xC
2.n0n/1=2

D �1; n0 � nC xC
2.n0xC/1=2

D 1;
n0 � n � xC
2.nxC/1=2

D �1: (6.4.24)

In place of (6.3.21), for pair creation one finds

0
BB@
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n0�n
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n0�nC1

1
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CCAK1=3.�/C 2m
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cosh u
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BB@
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aC C a�
�aC
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1
CCAK2=3.�/

3
775 ;

(6.4.25)

with An0n given by (6.4.21), and with

�˙ D 1

1� tanh w
D cosh w.cosh w ˙ sinh w/: (6.4.26)

Relativistic Approximation to the Vertex Function

The ‘relativistic’ approximation, which is actually the large-(n; n0) approximation,
involves not only the Airy integral approximation to the J -functions, but also
approximations to a˙; a0̇ and b 0̇ ; b˙ in the components (6.4.7) of the vertex
function. Only the leading terms, of zeroth and first order inm=!, need be retained;
these are

aC 
 1; a0C 
 1; a� 
 ��
m

!
sinh u; a0� 
 ��C

m

!
sinh u;

bsbs0 
 !

2 cosh w

h
1C m

!
.s�� C s0�C/

i
; (6.4.27)

with �˙ given by (6.4.26).
The leading terms in the expansion of the components (6.4.7) of the vertex

function follow from (6.4.25) and (6.4.27). They are of the form

."n"
0
n0/

1=2�
?;k
q0q 
 .�i/n�n0



p
3

2m2

!
cosh u cosh w �?;k

s0s ; (6.4.28)
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and explicit evaluation gives

�?
s0s D i

(
1
2
.1C s0s/

�
sinh u cosh wK1=3

�

C 1
2
.1 � s0s/

�
s cosh wK1=3 C cosh u sinh wK2=3

�)
; (6.4.29)

�
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s0s D

(
1
2
.1C s0s/

� � s cosh wK1=3 C cosh u cosh wK2=3

�

C 1
2
.1 � s0s/

� � sinh u sinh wK1=3

�)
; (6.4.30)

where the argument of the functions K1=3.�/, K2=3.�/ is given by (6.4.22),
specifically by � D .4mBc=3!B/ cosh3 u cosh2 w.

6.4.4 Spin- and Polarization-Dependent Decay Rates

The rate of photon decay for ?- and k-polarized photons propagating across the
magnetic field reduces to

R
?;k
s0s

D �0e
2m3

3
3!2
Bc

B

Z 1

0

du cosh3 u
Z 1

0

dw j�?;k
s0s

j2: (6.4.31)

The spin-dependent factors arise from the squares of the vertex components (6.4.9)–
(6.4.30), respectively:
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s0sj2 D 1
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.1C s0s/

�
cosh2 wK2

1=3 C cosh2 u cosh2 wK2
2=3

� 2s cosh u cosh2 wK1=3 K2=3

�C 1
2
.1� s0s/ sinh2 u sinh2 wK2

1=3:

(6.4.32)

The argument of the Macdonald functions is given by (6.4.22), specifically, � D
1
2
y cosh3 u, y D .8m=3!/.Bc=B/ cosh2 w.

The integral over u in (6.4.31) with (6.4.32) may be performed using (6.3.29)
with t D sinh u and y D .8m=3!/.Bc=B/ cosh2 w. This gives
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2m2

8
2
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Z 1
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cosh2 w
S

?;k
s0s ; (6.4.33)
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with the spin- and polarization-dependence included in
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: (6.4.34)

Spin-Summed Decay Rates

The total rate of decay is found by summing over the spins, s0; s D ˙1, of
the electron and positron. For unpolarized photons one averages over the two
polarizations. The resulting rates are denoted

R?;k D
X
s0;s

R
?;k
s0s ;

NR D 1
2
.R? CRk/: (6.4.35)

The sums over s0; s are evaluated using (6.4.32):

X
s0 ;s
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1=3 C cosh2 u cosh2 wK2
2=3

�
:

(6.4.36)

Alternatively, the decay rates summed over the spin states may also be derived
more directly using (6.4.5). To lowest order in an expansion inm=! the coefficients
"n"n0 Cm2˙p2z and pnpn0 are equal, and the resulting combinations of J -functions,
.J nn0�n�1 C J n�1

n0�nC1/
2 and .J n�1

n0�n C J nn0�n�1/
2 respectively, are of second order in

m=!, and proportional to K2
2=3. There are contributions of the same order from

.J nn0�n�1 � J n�1
n0�nC1/2 and .J n�1

n0�n � J nn0�n�1/2, which are proportional to K2
1=3, with

coefficients

"n"n0 Cm2 ˙ p2z � pnpn0 D m2Œ1˙ sinh2 u C cosh2 u .2 cosh2 w � 1/�; (6.4.37)
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respectively. The combinations (6.4.36) are reproduced. After integration over u, the
spin-summed decay rate (6.4.35) becomes

R?;k D �0e
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Z 1
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cosh2 w

�
�
Z 1

y

dx K5=3.x/C .4 cosh2 w ˙ 1/K2=3.y/

�
;

(6.4.38)

with y D .8m=3!/.Bc=B/ cosh2 w. An alternative derivation by Tsai and Erber
[24] using Schwinger’s proper time technique gives

R?;k D �0e
2m2

4
2
p
3 !

Z 1

0

dv

�
9 � v2
3.1� v2/

˙ 1

�
K2=3.y/; (6.4.39)

with y D .8m=3!/.Bc=B/.1�v2/�1. The equivalence of (6.4.38) and (6.4.39) may
be shown by writing v D tanh w and using the identity

Z 1

0

dw

cosh2 w

Z 1

y

dx K5=3.x/ D
Z 1

0

dw

cosh2 w

�
1C 4

3
sinh2 w

�
K2=3.y/:

(6.4.40)

Asymptotic Approximation

The result (6.4.40) simplifies when the Macdonald functions are approximated by
their asymptotic limit K�.y/ � .
=2y/1=2 exp.�y/. This corresponds to the limit
in which the energies of the electron and positron are close to !=2, and the integrals
being dominated by the region w � 1, where tanh w is small. In this limit one
may make the approximation sinh w 
 w and cosh w 
 1, except in the exponent
y 
 .4=3�/.1 C w2/. In this limit, (6.4.38) gives a well-known result (ordinary
units)

NR D 1
2
.R? CRk/ D ˛c

mc2

„
B

Bc

3
p
3

16
p
2

exp

�
�8mc

2Bc

3„!B


; (6.4.41)

which applies for „!=2mc2.B=Bc/ � 1. An accurate approximation that includes
(6.4.41) and applies more generally is [6]

NR D ˛c
mc2

„
B

Bc

3
p
3

16
p
2

2�



K2
1=3.�/; � D 4mc2Bc

3„!B : (6.4.42)

The approximate form (6.4.42) is a smooth function that ignores the saw-tooth
variation characteristic of the exact result, as illustrated in Fig. 6.5. A comparison of
the exact and approximate forms for a magnetic field characteristic of a pulsar [4]
shows that the smooth approximation is a poor one near threshold, ! 
 2m, but
provides a good approximation for ! 	 2m, B � Bc .
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Fig. 6.5 The rate of one-photon pair creation per unit length for ? and k polarizations versus the
(perpendicularly propagating) photon energy, for B D Bc (From [4], reprinted with permission
AAS)

The polarization- and spin-dependence is included in (6.4.33) with (6.4.34) and
the leading terms that correspond to the approximation (6.4.41) give

R?
s0s D 1

2
.1 � s0s/

NR
6
Œ1C shwi�; R

k
s0s D 1

2
.1C s0s/.1 � s/

NR
12
; (6.4.43)

with hwi D .3„!B=8
mBc/1=2, and where terms hw2i and higher are neglected.
Thus, in this limit, ?-polarized photons decay into pairs with opposite spins, with
a small preference for the higher energy particle having spin up, and k-polarized
photons decay into pairs with the same spin with a strong preference for spin down.
These spin preferences are consistent with the preferences found near the thresholds
n; n0 D 0; 1: the lowest threshold for k-polarized photons is n D n0 D 0, which
corresponds to both particles having spin down (s D s0 D �1), and the lowest
threshold for ?-polarized photons is n D 0, n0 D 1 or n D 1, n0 D 0, with s0 D �s
the higher-energy particle having spin up.

6.4.5 Energy Distribution of the Pairs

The decay rates (6.4.38) contain information on the energy distribution between the
electron and positron. Writing these energies as "n ! ", "0

n0 ! ! � ", one has
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4 cosh2 w D !2

".! � "/
;

dw

cosh2 w
D 2d"

!
: (6.4.44)

Let dR?;k=d."/ be the rate of decay with one of the particles in the energy range
d". Then (6.4.38) implies

dR?;k

d"
D �0e

2m2

2
2
p
3!2

�
�
Z 1

y

dx K5=3.x/C
�

!2

".! � "/
˙ 1



K2=3.y/

�
;

y D 2mBc

3!B

!2

".! � "/
: (6.4.45)

The distribution (6.4.45) averaged over the polarization of the photons has a
functional form / yK2=3.y/ that is well described by y1=3e�y , which increases
/ y1=3 for y � 1, has a maximum at y D 1=3 and decreases exponentially for
y 	 1. Regarding y as a function of "=! for given 2mBc=3!B , it follows from
(6.4.44) that the minimum value of y is for " D 1

2
! (w D 0), when the energies

of the electron and positron are equal. For 2mBc=3!B 	 1, one has y 	 1

for all w � 0, and the exponential decrease of the Macdonald functions with y
implies that the distribution is sharply peaked around the minimum of y. Hence, for
2mBc=3!B 	 1 decay in which the energies of the electron and positron are nearly
equal is strongly favored. For 2mBc=3!B � 1 the minimum value of y is small.
The maximum of the Macdonald functions corresponds to 4 cosh2 w D !B=2mBc .
Hence, for 2mBc=3!B � 1, one of the two particles gains nearly all the photon
energy, with the other having an energy " 
 2mBc=B � !.

Lorentz Transformation to an Arbitrary Frame

The foregoing results for pair creation are derived in the frame in which the photon
is propagating across the magnetic field lines (kz D 0, sin � D 1). Results for an
arbitrary direction of propagation of the photon are obtained by making a Lorentz
transformation to a frame with kz ¤ 0, sin � ¤ 1. The Lorentz transformation is
closely analogous to that introduced above for synchrotron radiation, cf. (6.2.17).
Specifically, the Lorentz factor for the transformation is 1= sin � , and the only
changes to the foregoing formulae involve inclusion of factors of sin � . The
frequency, !, and the Lorentz factor, � , in the frame kz D 0 are replaced by ! sin �
and � sin � , respectively, in an arbitrary frame. Suppose one denotes quantities in
the frame kz D 0 by tildes. On transforming from the frame � D 
=2 to a frame
with arbitrary � , the rate R?;k.!/ is replaced by QR?;k. Q!/, with

R?;k.!/ D sin � QR?;k.! sin �/: (6.4.46)

In the analogous relation for dR?;k=d", multiplicative factors of sin � cancel, and
one simply replaces ! and ", by ! sin � and " sin � , respectively, on the right hand
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side of (6.4.45). The relativistic approximation, ! 	 2m in the frame kz D 0, is
replaced by ! sin � 	 2m in an arbitrary frame.

6.4.6 One-Photon Pair Annihilation

One-photon pair annihilation is the inverse of one-photon pair creation. In the
absence of a magnetic field, a pair can decay only into two (or more) photons, and in
the presence of a magnetic field, the one-photon and two-photon processes compete.
Early estimates [3, 29] were based on pairs in their ground state, and suggested
that the one-photon process dominates only for B �>109 T. Subsequently it was
recognized that one-photon annihilation can dominate at lower B if the pair is in
an excited state [1, 7, 8, 32].

The kinetic equation (6.1.30) includes both pair creation and decay, and it implies
that the rate of increase of the photon occupation number due to pair annihilation
is related in a simple way to the absorption coefficient for pair annihilation.
Specifically, to obtain DN.k/=Dt for pair annihilation, one repeats the foregoing
calculation for the decay rate for pair creation after first multiplying by the product
of the occupation numbers, nC

s .n; pz/n
�
s0.n

0; p0
z/, of the electrons and positrons.

A general expression for the rate of production of (linearly polarized) photons is

DN?;k.k/
Dt

D
X
n;n0;˙

�0e
3B

4


2
4"n0"nj� ?;k

q0q
j2nC

s .n; pz/n
�
s0
.n0; kz � pz/

!3 sin2 � gnn0

3
5

˙
; (6.4.47)

where � ?;k
q0q

is defined by (6.4.4), and where ˙ indicates evaluation at the two
solutions (6.1.18) of the resonance condition. The volume emissivity, J.!; �/, is
related to DN..k/=Dt by

J?;k.!; �/ D !3

.2
/3
DN?;k.k/

Dt
; (6.4.48)

with k? D ! sin �; kz D ! cos � .
For annihilation of nonrelativistic pairs, a given value of n and n0 may be treated

independently of any value. There is a threshold condition, gnn0 D 0, with gnn0 given
by (6.4.10) in this case, and the rate (6.4.47) of annihilation of a pair for given n; n0
is singular at gnn0 D 0. As for creation of a pair, the annihilation of an electron and
a positron with the same spin produces a k-polarized photon, and annihilation of an
electron and a positron with the opposite spins produces a ?-polarized photon. For
the two lowest thresholds, n D 0 D n0 and nC n0 D 1, one finds

DN k.k/
Dt

D
X
˙

�0e
3B sin � e�x

2
.!2 sin2 � � 4m2/1=2

�
nC� .0; pz/n

��.0; kz � pz/
�

˙ ;



6.4 One-Photon Pair Creation 299

DN?.k/
Dt

D
X
˙

�0e
3B sin � e�x


Œ!2 sin2 � � 4m2.1C B=Bc/�1=2

� �nC� .0; pz/n
�C.1; kz � pz/C nC

C.1; pz/n
��.0; kz � pz/

�
˙ ; (6.4.49)

where in the latter case the particle in the first excited state must have spin up,
s D 1; n D 1, s0 D �1; n0 D 0 or s D �1; n D 0, s0 D 1; n0 D 1. For given
n; n0; !; � , the values pṅn0 are determined by (6.1.18), and the rate of annihilation is
proportional to the occupation numbers of the electrons and positrons at pz D pṅn0 ,
p0

z D kz � pṅn0 . In the case n D n0 D 0 the solutions (6.1.18) simplify to

p˙
000 D kz

2
˙ !

2

�
!2 � k2z � 4m2

!2 � k2z


1=2
;

"0.p
˙
000/ D !

2
˙ kz

2

�
!2 � k2z � 4m2

!2 � k2z


1=2
: (6.4.50)

In (6.4.49) vacuum dispersion is assumed in writing !2 � k2z D !2 sin2 � . When
treating pair annihilation it is appropriate to regard the energies, "; "0, and momenta,
pz; p

0
z, as given so that ! D "C "0 and kz D pz C p0

z are determined by energy and
momentum conservation. This interpretation is implicit in (6.4.49). In particular, for
pairs in the ground state the first of (6.4.49) may be rewritten

DN k.k/
Dt

D �0e
3B sin � e�x


Œ!2 � k2z � 4m2�1=2
nC� .0; pz/n

��.0; p0
z/;

! D .m2 C p2z /
1=2 C .m2 C p02

z /
1=2; kz D pz C p0

z; (6.4.51)

with � determined by writing sin2 � D .!2 � k2z /=!
2.

In the limit of ultrarelativistic pairs, the sum over n; n0 and the factor 1=gnn0

are rewritten in terms of integrals over u;w, as in (6.4.18). To lowest order in the
expansion in m=!, n; n0 are related to w by

n D !2 sin2 �

8eB
.1˙ tanh w/2; n0 D !2 sin2 �

8eB
.1C tanh w/2: (6.4.52)

Evaluating the ˙-solutions (6.1.18) in the ultrarelativistic limit gives

pṅn0 D 1
2
.1C tanh w/! cos � ˙m sinh u: (6.4.53)

The ultrarelativistic approximation involves expanding in m=! sin � , and to lowest
order one neglects the final term in (6.4.49) that contains the dependence on u. In this
approximation, (6.4.52) and (6.4.49) imply that the pitch angles of the particles,
˛ D arctanŒp˙

nn0=pn�, pn D .2neB/1=2, satisfy ˛ D � to lowest order in m=! sin � .
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Hence, if one writes the occupation numbers in terms of polar coordinates, p; ˛, in
momentum space, n˙.n; pz/ ! n˙.p; ˛/, then the occupation numbers are to be
evaluated at p D pn, p0 D pn0 , with n; n0 given by (6.4.52), and at ˛ D � .

The final step is to integrate over u. Because the occupation numbers are
independent of u to lowest order, the integral over u is identical to that performed
in the derivation of (6.4.38). Hence, using (6.4.38), the emission of photons due to
annihilation of ultrarelativistic pairs reduces to

DN?;k.k/
Dt

D �0e
2m2

2
2
p
3 !

Z 1

0

dw

cosh2 w

�
�
Z 1

y

dtK5=3.t/

C.4 cosh2 w ˙ 1/K2=3.y/

�
ŒnC.pC; �/n�.p�; �/C nC.p�; �/n�.pC; �/�;

(6.4.54)

with p˙ D 1
2
.1 ˙ tanh w/ ! sin � . The spin dependence is neglected in (6.4.54).

The dependence on the spins of the electron and positron may be inferred from the
discussion of the spin-dependence of pair creation. There is a preference for given
initial spins to lead to either ?- or k-polarized photons, but there is no selection rule
that forbids any of the possibilities.

6.5 Positronium in a Superstrong Magnetic Field

The properties of positronium in a strong magnetic field are discussed in this section.
This discussion is motivated by the application to pulsars, where a photon can decay
into a pair or evolve into a bound pair [17, 18].

6.5.1 Qualitative Description of Positronium

Positronium is familiar as a bound state of an electron and a positron forB D 0. In a
weak magnetic field, the states of the positronium states are magnetically split, in a
manner closely analogous to magnetic splitting of the states of hydrogen-like atoms.
In this case, the magnetic field is treated as a weak perturbation compared with the
Coulomb force. If the magnetic field is sufficiently strong (B=Bc 	 ˛2c ) the roles
of the magnetic and Coulomb forces reverse. Thus, in the strong-B limit, to a first
approximation the electron and positron are treated as free particles in a magnetic
field, and the coupling due to the Coulomb force is treated as a perturbation.

Consider the dispersion curves of a photon and of positronium in which the
energy, written ! or ", is plotted as a function of perpendicular momentum, k?
or p?. For the photon the dispersion curve is approximately of the form ! / k?
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Fig. 6.6 The interference between photon dispersion curves and dispersion curves between bound
states is shown schematically. In the absence of positronium states, the dispersion curves for
photons with two transverse states of linear polarization would follow the light line, !2 / k2

?
.

Three positronium states, labeled 0C, 1� and 1C are indicated. The superscript denote parity, and
photons with a particular polarization can evolve into positronium states a particular parity. The
circles denote points where the dispersion curves would intersect, but they reconnect to form two
mixed photon-positronium state denoted by the solid lines. For a photon to continue on the photon
dispersion curve, it must tunnel across the gap between these two curves (After [17, 18])

for propagation nearly across the field line, k2z � k2?. On a plot of !2 versus
k2?, this dispersion curve forms a continuous light line. There are various states
of positronium with slightly different binding energies, which depend weakly on
a quantum number that can be interpreted as k2?. The “dispersion curves” for
each bound state of positronium corresponds to an energy " or ! just below 2 m,
corresponding to an approximately horizontal line for each bound state. The photon
and positronium dispersion curves would cross if they were independent. However,
if the photon and positronium have the same quantum numbers then the two
states interfere, causing the curves to deviate away from each other, as illustrated
in Fig. 6.6. A photon following the dispersion curve evolves into positronium. A
subsequent decay of positronium into a pair can occur, due to photo-dissociation
say, and this constitutes an alternative source of free pairs to populate a pulsar
magnetosphere. Quantum mechanical tunneling can prevent the conversion into
positronium occurring, as illustrated in Fig. 6.6.
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6.5.2 Approximate Form of Schrödinger’s Equation

The energy eigenstates of positronium in a strong magnetic field are found by
separating the variables into those that describe the motion of the positronium as
a whole, and those that describe its internal structure. Let x1, x2 be the coordinates
of the electron and positron. The center of mass is described by the coordinate
R D 1

2
.x1 C x2/ and the internal motions by r D x1 � x2. In general, for an

N -body system with the i th particle having coordinate xi mass mi and charge qi ,
the conserved momentum associated with the center of mass is [31]

OP0 D
NX
iD1
. Opi � qiA C qiB � xi /: (6.5.1)

In the case of positronium this reduces to OP0 D Op1 C Op2 � 1
2
B � r ! �i@=@R �

1
2
B�r [30]. Assuming an eigenvalue K for OP0, the total wavefunction is of the form

˚.R; r/ D ei.KC 1
2B
r/�R	.r/; (6.5.2)

with 	.r/ satisfying a Schrödinger-like equation for the internal motions. The
problem may be simplified by choosing the frame (K D 0) in which the center
of mass is at rest, but even in this frame a number of approximations need to be
made to derive an appropriate approximate equation [17, 18, 30].

Analogy with the One-Dimensional Hydrogen Atom

In a zeroth approximation, in which the Coulomb force is neglected, the electron and
positron are assumed to have energies "0n D .m2C2neB/1=2, "0n0 D .m2C2n0eB/1=2,
with pz D p0

z D 0. With the Coulomb force included, let the total energy be E and
let �" D �.E � "0n � "0n0/ be the binding energy (defined to be positive for a bound
state). Shabad and Usov [18] argued that an appropriate approximation to �" is
found by solving the equation

�
1

2Mnn0

d2

d.z1 � z2/2
� V0.z1 � z2/



	.z1 � z2/ D �"	.z1 � z2/ (6.5.3)

with Mnn0 D "0n"
0
n0=."

0
n C "0n0/. The derivation of (6.5.3) involves some detailed

analysis, based on the Bethe-Salpeter equation [18], but it also requires further
approximations to avoid difficulties with the ground state.

Physically, the main difficulty concerns the approximation of the Coulomb
potential, V.r/ D �e2=4
"0r , with r D Œ.z1 � z2/2 C .x1 � x2/

2?�1=2. The form
that appears in (6.5.3) may be understood by noting that the perpendicular motion
is described by the gauge-dependent eigenvalues that describe the location of the
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centers of gyration of the electron and positron. Choosing the Landau gauge, these
are p1y; p2y , with Py D p1y C p2y describing the relative separation of the centers
of gyration. The corresponding approximation is r D Œ.z1 � z2/2 C P2

y =.eB/
2�1=2.

This leads to singular behavior for Py ! 0, when the problem reduces to that of
the one-dimensional hydrogen atom [12]. One way of avoiding the singularity at
Py D 0 is by including the term 1=eB in the potential [18]

V0.z1 � z2/ D � e2

4
"0

1

jz1 � z2j C Œ1=eB C P2
y =.eB/

2�1=2
; (6.5.4)

allowing the problem to be treated by analogy with the one-dimensional hydrogen
atom [12]. A different way of avoiding this difficulty had been proposed earlier [30].

The eigenstates determined by (6.5.3) with (6.5.4) may be labeled by n; n0 and
two additional quantum numbers: a principal quantum number, nc D 0; 1; 2; : : :,
analogous to that of the hydrogen atom, and a sign (parity), ˙1, depending on
whether the wavefunctions are even or odd under z1 $ z2.

6.5.3 Bound States of Positronium

In a strong magnetic field, positronium is treated by starting with the exact
eigenfunctions for the electron and positron and including the Coulomb interaction
as a perturbation. The condition for this perturbation approach to be valid is that
the radius of gyration of the electron or positron, p?=eB D .2n/1=2=.eB/1=2, be
small compared with the Bohr radius, a D 4
"0=me

2 of positronium. Requiring
a 	 1=.eB/1=2 corresponds to B 	 ˛2cBc D 2:35 � 105 T, which is assumed to
be satisfied for the purpose of discussion here. Let the unbound state of the electron
and positron have quantum numbers n; n0 such that the energy of the bound state is

"nn0.nc; Py/ D "0n C "0n0 ��"nn0.nc; Py/; (6.5.5)

with the energy correction term, �"nn0 D �"nn0.nc; Py/, given by

�"nn0 D ˛2cMnn0
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ˆ̂̂̂
ˆ̂̂̂
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2Œ1=eB C P2
y =.eB/

2�1=2


2
.nc D 0/;

�
nc C

�
ln

ncrBnn0

2Œ1=eB C P2
y =.eB/

2�1=2


�1��2
.even/;

�
nc C 2Œ1=eB C P2

y =.eB/
2�1=2

rBnn0


�2
.odd/;

(6.5.6)

where nc is the principal quantum, and rBnn0 D 4
"0=e
2Mnn0 is the appropriate

Bohr radius. The ground state has n D n0 D nc D 0 and is even. The wavefunction,
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	nn0nc .z1 � z2/ for the excited states, nc > 0, was determined by Loudon [12] in
terms of Whittaker functions. In the following discussion only the wavefunction for
the state nc D 0 is required and this is approximated by

	nn00.z1 � z2/ D 1

.rBnn0�nn0/1=2
exp

�
� jz1 � z2j
rBnn0�nn0



;

�nn0 D
 
2 ln

rBnn0

2Œ1=eB C P2
y =.eB/

2�1=2

!�1
: (6.5.7)

In the limit �nn0 ! 0 the wavefunction becomes singular, 	nn00.z1 � z2/ !
ı.z1 � z2/, but only for nc D 0. It is this nearly singular case that is the most
important when considering the coupling between the photon and positronium
states. In the following discussion, only the case nc D 0 need be retained explicitly.
Thus, in discussing the interaction between photon and positronium states, the
positronium states are a nearly singular state, nc D 0, plus a set of excited bound
states, nc D 1; 2; : : :, that are of only minor interest. These higher states merges into
a continuum for nc 	 1 and join on smoothly to the continuum of unbound states
corresponding to a nonrelativistic free pair.

6.5.4 Evolution of Photons into Bound Pairs

Pair formation in a pulsar magnetosphere is attributed to photons emitted nearly
along a field line, sin � 
 0, having k2? D !2 sin2 � increase due to the angle, � ,
increasing as the curve field line deviates away from the ray path.

One is free to make a Lorentz transformation to the local frame in which the
photon is propagating perpendicular to the field lines, and only its perpendicular
energy, ! sin � , is relevant in discussing photon splitting, one-photon pair decay
and positronium formation. The possibility discussed here is that the photon simply
evolves into positronium. The bound state energy of positronium corresponds to
! sin � < 2m, and the photon can transform into positronium before it reaches the
threshold for decay into a free pair.

Interference Between Photon and Positronium States

In the absence of any interaction between them, the dispersion curves for photons
and positronium intersect, at the points denoted by circles in Fig. 6.6. Interference
between the states of a photon and positronium occurs where the energies of
the photon and the positronium are equal at the same perpendicular momentum
(k? and Py , respectively). To treat this coupling, for given n; n0, it suffices to
estimate the contribution of the positronium state with nc D 0 to the photon



6.5 Positronium in a Superstrong Magnetic Field 305

dispersion. The dispersion relation for k-polarized photons near the intersection
point and the positronium dispersion curve for n D n0 D nc D 0 may be
approximated by an expression of the form [17]

!2 � k2z � k2? D 
k.!2 � k2z ; k2?/;


k.!2 � k2z ; k2?/ D 4˛ceB
�00.0; k?/ j	000.0/j2 e�k2

?
=2eB

�200.0; k?/ � !2 C k2z
;

j	000.0/j2 D 2

rB00
ln

rB00eB

2.k2? C eB/1=2
; (6.5.8)

where only the wavefunction at z1 D z2 contributes. The term 
k implies a coupling
between the photon and positronium states. The form (6.5.8) corresponds to the
dispersion of the mixed states being determined by the solutions

!2 � k2z D 1
2

�
"00.0; k?/

�2 C 1
2
k2? ˙ 1

2

�˚�
"00.0; k?/

�2 � k2?
�2 C 4A.k?/

�1=2
;

A.k?/ D 4˛ceB"00.0; k?/
a

ln

�
a.eB/1=2

.1C p2?=eB/1=2



exp

�
� k2?
2eB



; (6.5.9)

with !; kz interpreted as "; Pz for the positronium-like sections of the dispersion
curves. The upper-frequency branch is positronium-like at low k? and photon-
like at high k?, and the lower-frequency branch is photon-like at low k? and
positronium-like at high k?, cf. Fig. 6.6. To treat the analogous interference for
?-polarized photons one needs to carry out a similar analysis for the state with
nC n0 D 1; nc D 0.

An implication of the mixing of the photon-positronium states is that a photon
should evolve into positronium, as k? increases, before the threshold for creation of
a free pair is reached. A k-polarized photon evolves into positronium in its ground
state, n D n0 D nc D 0, and a ?-polarized photon evolves into positronium in the
first excited state, n C n0 D 1; nc D 0. In the latter case, the electron or positron
in the excited state, say n D 1; n0 D 0, has s D 1 and it decays to its ground state,
n D 0, through a spin-flip transition like a free particle, leaving the positronium in
its ground state after emitting the cyclotron photon.

6.5.5 Tunneling Across the Intersection Point

The evolution of a photon into positronium as k? increases is an adiabatic process,
and it occurs only if the adiabatic assumption is valid. Non-adiabatic behavior can
result from any process that introduces an uncertainty into the definition of the wave
or particle modes. One such effect is associated with the bending of the direction of
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propagation. The direction of propagation changes from along a straight line at an
angle � for the photon, to along the field line (� D 0) for the positronium. The
adiabatic approximation requires that the rate of this change be small compared
with the frequency of the wave.

Another effect that needs to be taken into account in the possible decay of
positronium into two photons. Suppose that the positronium state (the upper of the
mixed states) decays due to this process at a rate �2� . Then there is an uncertainty,
�" � �2� , in the energy of the positronium state. A detailed calculation [30] gives

�2� 
 8 � 1012 s�1
�

B

108 T



: (6.5.10)

The adiabatic assumption is valid only if the separation of the dispersion curves
near the original intersection point is large compared with the net effect of all such
broadenings.

In the application to pulsars, the two-photon decay of positronium is the
most important broadening effect. Then the adiabatic condition is valid for
A.k?/�>2m�2� , with k? 
 2m. Due to the exponential dependence of A.k?/
on B=Bc , cf. (6.5.9), this condition is relatively insensitive to other details in
the calculation. Photons evolve into positronium for B �>0:15Bc, but not for
B � 0:15Bc [18, 25, 26].
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Chapter 7
Second Order Gyromagnetic Processes

Second order processes are described by Feynman diagrams with two electron-
photon vertices. Such processes include Compton scattering, two-photon emission,
two-photon pair creation and annihilation, Møller and Bhabha scattering, and the
trident process. These processes have counterparts in the absence of a magnetic
field, and an important motivation for the inclusion of the magnetic field was the
discovery of radio and X-ray pulsars, and the recognition that the sources are
strongly magnetized neutron stars [9]. The magnetic field modifies these processes
in various ways, two of which are particularly notable: the fact that electrons
quickly relax to the ground Landau state, n D 0, and the inclusion of gyromagnetic
resonances.

General properties of Compton scattering and the related processes of two-
photon emission and absorption are summarized in � 7.1, where some general
formulae are derived by partially summing the probability over intermediate states.
The special case of Compton scattering by an electron in the state n D 0 is discussed
in � 7.2. A cyclotron-type approximation for the scattering is discussed in � 7.3, and
the magnetized counterpart of inverse Compton scattering is discussed in � 7.3.3.
Two-photon emission and two-photon pair annihilation and creation are discussed
in � 7.4. Electron-ion and electron-electron scattering are discussed in � 7.5.

7.1 General Properties of Compton Scattering

The probability of Compton scattering includes all processes related to Compton
scattering by crossing symmetries: Compton scattering by a positron, two-photon
pair creation and annihilation, and double emission and absorption. The resonance
condition for Compton scattering is used to derive results for the kinematics of
these processes. Kinetic equations that describe the effects of Compton scattering
on the distributions of photons and electrons are written down. Some analytic results

D. Melrose, Quantum Plasmadynamics: Magnetized Plasmas, Lecture Notes
in Physics 854, DOI 10.1007/978-1-4614-4045-1 7,
© Springer Science+Business Media New York 2013

309



310 7 Second Order Gyromagnetic Processes

q

k

q¢¢

k¢

q¢ q

k

k¢

q¢

q¢

q¢¢

q

k¢k

c

a b

νν

Fig. 7.1 The three diagrams that contributions Compton scattering in a magnetic field

relating to the evaluation of the probability are derived by partially performing the
sum over an intermediate state, q00, specifically by performing the sums over s00; �00
explicitly.

7.1.1 Probability of Compton Scattering

The Feynman diagrams for Compton scattering in a magnetic field are the same
as those for Compton scattering in the absence of a magnetic field, except for the
labeling of the states. In Fig. 7.1, the relevant Feynman diagrams are drawn for
Compton scattering by an electron in an initial state q D n; pz; s and a final state
q0 D n0; p0

z; s
0. Let the initial and final photons be in the modes M 0 and M , and

have 4-momenta k0 and k, respectively. Conservation of the parallel component of
4-momentum implies

�pz � �0p0
z C k0

z � kz D 0: (7.1.1)

The condition (7.1.1) is implicit in the general expression for the probability
of Compton scattering and related processes. The probability is written down
in (5.6.13) in a generic form involving the transition matrix Tfi. On evaluating Tfi

using the vertex formalism, the probability becomes

w�
0�
q0qMM 0.k;k

0/ D e4RM.k/RM 0.k0/
j"20!M .k/!M 0.k0/j

ˇ̌
e�
M�.k/eM 0�.k

0/
�
M�0�
q0q .k;k

0/
��� ˇ̌2

� 2
ıŒ�"q � �0"q0 � !M .k/C !M 0.k0/�; (7.1.2)

with "q D "n.pz/, "q0 D "n0.p0
z/, usually written "n, "0

n0 , respectively. The 4-tensor
in the numerator in (7.1.2) consists of three parts,
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�
M�0�
q0q .k;k

0/
��� D �

M�0�
q0q .k;k

0/
���
1

C �
M�0�
q0q .k;k

0/
���
2

C �
M�0�
q0q .k;k

0/
���

nl ;

�
M�0�
q0q .k;k

0/
���
1

D
X
�00 ;q00

Œ� �0�00

q0q00 .k/�
�Œ� �00�

q00q .�k0/��

�"q � �00"00
q00 C !M 0.k0/

exp

�
�i .k � k0/z

2eB



;

�
M�0�
q0q .k;k

0/
���
2

D
X
�00 ;q00

Œ� �0�00

q0q00 .�k0/�� Œ� �00�
q00q .k/�

�

�"q � �00"00
q00 � !M .k/ exp

�
i
.k � k0/z
2eB



;

�
M�0�
q0q .k;k

0/
���

nl D 2

e
Œ� �0�
q0q .k � k0/��D��.kM � k0

M 0/

� ˘���.kM � k0
M 0 ;�kM ; k0

M 0/; (7.1.3)

which correspond to the three diagrams in Fig. 7.1. The term labeled nl describes
nonlinear scattering, which is associated with the quadratic response tensor, ˘��� .
There are contributions from the medium and from the magnetized vacuum to
˘��� , with the former typically the more important [17]. Nonlinear scattering
in a thermal plasma is important for relatively long wavelengths, of order the
Debye length, whereas quantum effects tend to be significant only for very much
shorter wavelengths. As a consequence, when nonlinear scattering is important, the
nonquantum theory suffices.

The case � D �0 D 1 in (7.1.2) corresponds to Compton scattering by an electron.
The various crossed processes correspond to changing the signs � or �0 or changing
the signs of k or k0.

Kinematics of Compton Scattering

The resonance condition in the probability (7.1.2) with (7.1.1) can be reduced to the
same form as the gyroresonance condition in (6.1.1). This is achieved by writing
˝ D ! � !0, with ! D !M .k/, !0 D !M 0.k0/, and K D k � k0. The kinematics
for gyromagnetic emission may then be used to describe the kinematics of Compton
scattering. Specifically, the solutions of the gyroresonance condition found in � 6.1.2
translate trivially into corresponding solutions for Compton scattering and crossed
processes.

In place of (6.1.16)–(6.1.18), and (6.1.20), one has

Fnn0 D ."0n/
2 � ."0n0/

2 C˝2 �K2
z

2.˝2 �K2
z /

; Fn0n D 1 � Fnn0 ; (7.1.4)

G2
nn0 D G2

n0n D
�
˝2 �K2

z � ."0n � "0n0/
2
��
˝2 �K2

z � ."0n C "0n0/
2
�

4.˝2 �K2
z /
2

; (7.1.5)

pṅn0 D KzFnn0 ˙˝Gnn0 ; p0
ṅ0n D KzFn0n ˙˝Gn0n; (7.1.6)
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"ṅn0 D ˝Fnn0 ˙KzGnn0 ; "0
ṅ0n D ˝Fn0n �KzGn0n; (7.1.7)

respectively. The two physically allowed regions correspond to G2
nn0 � 0, and are

˝2 �K2
z � ."0n � "0n0/

2; ˝2 �K2
z � ."0n C "0n0/

2: (7.1.8)

The inequality ˝2 � K2
z � ."0n � "0n0/

2 applies to Compton scattering, with the
equality being the threshold condition for Compton scattering at given n; n0. The
region˝2�K2

z � ."0nC"0n0/
2 corresponds to decay of a photon into another photon

and a pair. For the crossed processes corresponding to !0; k0
z ! �!0;�k0

z, such that
one has ˝ D ! C !0, Kz D kz C k0

z, the first of the regions (7.1.8) is where double
emission is allowed, and the second region is where two-photon pair creation and
decay are allowed.

7.1.2 Kinetic Equations for Compton Scattering

The kinetic equations for Compton scattering, two-photon emission and absorption
and two-photon pair creation and decay are derived in the same way as the kinetic
equations for the single-photon processes, cf. � 6.1.3.

For Compton scattering of photons in the modeM 0 into photons in the modeM
by an electron, the kinetic equations for the photons are

DNM.k/

Dt
D
X
q0q

eB

2


Z
dpz

2


Z
d3k0

.2
/3
wCC
q0qMM 0.k;k

0/

� ˚
nqŒ1CNM.k/�NM 0.k0/� nq0NM.k/Œ1CNM 0.k0/�

�
;

DNM 0.k0/
Dt

D �
X
q0q

eB

2


Z
dpz

2


Z
d3k

.2
/3
wCC
q0qMM 0.k;k

0/

� ˚
nqŒ1CNM.k/�NM 0.k0/� nq0NM.k/Œ1CNM 0.k0/�

�
: (7.1.9)

The kinetic equation for the particles is

dnq

dt
D
Z

d3k

.2
/3

Z
d3k0

.2
/3

�X
q00

wCC
qq00MM 0.k;k

0/

� ˚
nq00 Œ1CNM.k/�NM 0.k0/� nqNM.k/Œ1CNM 0.k0/�

�

�
X
q0

wCC
q0qMM 0 .k;k

0/ /
˚
nqŒ1CNM.k/�NM 0.k0/� nq0NM.k/Œ1CNM 0.k0/�



;

(7.1.10)
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where q0 denotes the quantum numbers n0; s0; p0
z D pz C k0

z � kz and q00 denotes
n00; s00; p00

z D pz � k0
z C kz.

Compton Cross Section

It is conventional to describe Compton scattering in terms of the scattering cross
section. The relation between the cross section and the probability is discussed in
� 4.5.1, and given by (4.5.13), which translates into (ordinary units)

˙MM 0 D
Z 1

0

d! !2 n2M
.2
/3!0v0

gM 0

@.!nM /

@!

@ cos �

@ cos �r

@ cos � 0

@ cos � 0
r

wCC
q0qMM 0 ; (7.1.11)

with the probability given by (7.1.2).
In the approximation in which the refractive indices are approximated by

unity, and the ray and wave normal angles are not distinguished, the labels
M;M 0 in (7.1.11) may be interpreted as describing (transverse) polarization states,
and (7.1.11) reduces to

˙MM 0 D 1

c4

Z 1

0

d! !2

.2
/3!0 wCC
q0qMM 0 : (7.1.12)

On inserting the probability (7.1.2), the differential cross section (7.1.12) becomes

˙MM 0 D e4!2

.4
"0/2!02
ˇ̌
e�
M�eM 0�

�
M�0�
q0q

��� ˇ̌2
; (7.1.13)

where ! � !0 D "q � "q0 is implicit. The total cross section is found by
integrating (7.1.13) over the solid angle of the scattered photon.

7.1.3 Sum over Intermediate States: Vertex Formalism

Explicit evaluation of the probability (7.1.2) for Compton scattering involves
carrying out the sum over intermediate states. The sum is over states labeled
q00 D �00; s00; n00, and the sums over �00; s00 can be performed explicitly.

The sums need to be performed for each of the two contributions labeled 1 and 2
to the matrix element in (7.1.3). The term labeled 1 corresponds to the photon k0
being absorbed at the first vertex, labeled �, and the photon k being emitted at
the second vertex, labeled �, so that the intermediate state has �00p00

z D �pz C k0
z.

The term labeled 2 corresponds to the sequence of absorption and emission being
interchanged, and then the intermediate state has �00p00

z D �pz � kz. The sums over
�00; s00 can be performed explicitly by first rationalizing the denominators is these
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two terms, so that �00 appears only in the numerator. Omitting the labels denoting
the modes, the rationalization gives

�
M�0�
q0q .k;k

0/
���
1

D
X
n00

�
a�

0�
q0q.k;k

0/
���
1;n00

ei.xx
0/1=2 sin. � 0/

2�."q!0 � pzk0
z/C !02 � k02

z � 2n00eB
;

�
a�

0�
q0q.k;k

0/
���
1;n00

D
X
s00;�00

Œ�"q C �00"00
q00 C !0� Œ� �0�00

q0q00 .k/�
�Œ� ��00

qq00 .k
0/���: (7.1.14)

�
M�0�
q0q .k;k

0/
���
2

D
X
n00

�
a�

0�
q0q.k;k

0/
���
2;n00

e�i.xx0/1=2 sin. � 0/

�2�."q! � pzkz/C !2 � k2z � 2n00eB
;

�
a�

0�
q0q.k;k

0/
���
2;n00

D
X
s00;�00

Œ�"q C �00"00
q00 � !� Œ� �00�0

q00q0 .k
0/���Œ� �00�

q00q .k/�
�: (7.1.15)

The two tensors (7.1.14) and (7.1.15) are related by

�
M�0�
q0q .k;k

0/
���
2

D �
M�0�
q0q .�k0;�k/

���
1
;

�
a�

0�
q0q.k;k

0/
���
2

D �
a�

0�
q0q.�k0;�k/

���
1
:

(7.1.16)

On inserting the explicit form (5.4.18) for the vertex function, it is straight-
forward but tedious to perform the sums in (7.1.14) and (7.1.15) directly. It is
convenient to write the result in the form

�
a�

0�
q0q.k;k

0/
���
1;n00

D .ie�i /n0

.�iei 0

/n e�in00. 0� /�c�0�
q0q.k;k

0/
���
n00
;

�
a�

0�
q0q.k;k

0/
���
2;n00

D .�ie�i 0

/n
0

.iei /n ein
00. 0� /�d�0�

q0q.k;k
0/
���
n00
: (7.1.17)

The components of
�
c�

0�
q0q
.k;k0/

���
n00

and
�
d�

0�
q0q
.k;k0/

���
n00

are written down in
Tables 7.1 and 7.2, respectively. The components are related by the symmetry
property (7.1.16).

7.1.4 Sum over Intermediate States: Ritus Method

The Ritus method (� 5.5) provides an alternative way of evaluating the quan-
tities

�
M�0�
q0q .k;k

0/
���
1:2

in the probability (7.1.2). To illustrate the use of this

method, consider the evaluation of
�
M�0�
q0q .k;k

0/
���
1

, which involves the product

Œ� �0�00

q0q00 .k/�
�Œ� �00�

q00q .�k0/�� , and in the Ritus method this product becomes

V 2 N'�0

s0 .n
0; p0

z/J
�

n0n00.k?/ 	�
00

s00 .n
00; p00

z /
N	�00

s00 .n
00; p00

z /J �
n00n.�k0?/ '�s .n; pz/:
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Table 7.1 Table of tensor components of
�
c�

0�
q0q.k;k

0/
���
n00

, defined by (7.1.17), with A˙

q0q D
a0
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q0q � .�pz C k0

z/B
C

q0q �p
0�

q0q � A�

q0q.mp
0C

q0q � pn00q0�

q0q/�
c�

0�
q0q.k;k

0/
�21
n00

�ifŒ.�"q C !0/A
C

q0q � .�pz C k0

z/B
C

q0q �p
0�

q0q � A�

q0q.mp
0C

q0q C pn00q0�

q0q/g�
c�

0�
q0q.k;k

0/
�13
n00 Œ.�"q C !0/B�

q0q C .�pz C k0

z/A
�

q0q�v
0C

q0q � B
C

q0q.mv
0�

q0q � pn00r
0C

q0q /g�
c�

0�
q0q.k;k

0/
�31
n00 Œ�.�"q C !0/B�

q0q C .�pz C k0

z/A
�

q0q �u
0C

q0q C B
C

q0q.mu0�

q0q C pn00 t 0�q0q/�
c�

0�
q0q.k;k

0/
�23
n00 �ifŒ.�"q C !0/B�

q0q C .�pz C k0

z/A
�

q0q �v
0�

q0q � B
C

q0q.mv
0C

q0q � pn00r 0�

q0q/g�
c�

0�
q0q.k;k

0/
�32
n00 �ifŒ�.�"q C !0/B�

q0q C .�pz C k0

z/A
�

q0q �u
0�

q0q C B
C

q0q.mu0C

q0q � pn00 t 0�q0q/g

The sums are over s00; �00; n00. The sum over s00 is performed using (5.5.16), which
gives

X
s00

	�s00.n
00; p00

z /
N	�s00.n00; p00

z / D =P 00�00

q00 Cm

�00"q00V
;

with
�
P 00�00

q00

�� D .�00"00
q00 ; 0; pn00; �00p00

z /. In evaluating
�
a�

0�
q0q.k;k

0/
���
1;n00

, as given
by (7.1.14), the sum over �00 is performed using

X
�00

Œ�"q C �00"00
q00 C !0�

=P 00�00

q00 .p
00
z /Cm

2�00"q00

D .�"q C !0/�0 � pn00�2 � .�pz C k0
z/�

3 Cm; (7.1.18)

with p00
z D �00.�pz C k0

z/, and where �0; �2; �3 are Dirac matrices. The final step
is to evaluate the matrix elements of the resulting product of Dirac matrices for the
projected states.
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Table 7.2 As for Table 7.1 but for
�
d�

0�
q0q .k;k

0/
���
n00

�
d�

0�
q0q .k;k

0/
�00
n00 Œ.�"q � !/A

C

q0q C .�pz � kz/B
C

q0q�k
C

q0q C A�

q0q.mk
�

q0q C pn00 l
C

q0q/�
d�

0�
q0q .k;k

0/
�01
n00

�Œ.�"q � !/A�

q0q C .�pz � kz/B
�

q0q�v
C

q0q C A
C

q0q.mv
�

q0q � pn00r
C

q0q/�
d�

0�
q0q .k;k

0/
�10
n00 �Œ.�"q � !/A�

q0q � .�pz � kz/B
�

q0q�u
C

q0q � A
C

q0q.mu�

q0q C pn00 t
C

q0q/�
d�

0�
q0q .k;k

0/
�02
n00

�if�Œ.�"q � !/A�

q0q C .�pz � kz/B
�

q0q�v
�

q0q CA
C

q0q.mv
C

q0q � pn00r
C

q0q/g�
d�

0�
q0q .k;k

0/
�20
n00 ifŒ.�"q � !/A�

q0q � .�pz � kz/B
�

q0q�u
�

q0q C A
C

q0q.muC

q0q � pn00 t�q0q/g�
d�

0�
q0q .k;k

0/
�03
n00

Œ.�"q � !/B
C

q0q C .�pz � kz/A
C

q0q�k
C

q0q � B�

q0q.mk
�

q0q C pn00 l
C

q0q/�
d�

0�
q0q .k;k

0/
�30
n00 Œ.�"q � !/B

C

q0q C .�pz � kz/A
C

q0q�k
C

q0q C B�

q0q.mk
�

q0q C pn00 l
C

q0q/�
d�

0�
q0q .k;k

0/
�11
n00

Œ.�"q � !/A
C

q0q � .�pz � kz/B
C

q0q�p
C

q0q �A�

q0q.mp
�

q0q � pn00q
C

q0q/�
d�

0�
q0q .k;k

0/
�22
n00 Œ.�"q � !/A

C

q0q � .�pz � kz/B
C

q0q�p
C

q0q �A�

q0q.mp
�

q0q C pn00q
C

q0q/�
d�

0�
q0q .k;k

0/
�33
n00

Œ.�"q � !/A
C

q0q C .�pz � kz/B
C

q0q�k
C

q0q � A�

q0q.mk
�

q0q C pn00 l
C

q0q/�
d�

0�
q0q .k;k

0/
�12
n00 �ifŒ.�"q � !/A

C

q0q � .�pz � kz/B
C

q0q�p
�

q0q � A�

q0q.mp
C

q0q � pn00q�

q0q/�
d�

0�
q0q .k;k

0/
�21
n00

ifŒ.�"q � !/A
C

q0q � .�pz � kz/B
C

q0q�p
�

q0q � A�

q0q.mp
C

q0q C pn00q�

q0q/g�
d�

0�
q0q .k;k

0/
�13
n00 Œ.�"q � !/B�

q0q � .�pz � kz/A
�

q0q�u
C

q0q � B
C

q0q.mu�

q0q C pn00 t
C

q0q/g�
d�

0�
q0q .k;k

0/
�31
n00 Œ�.�"q � !/B�

q0q � .�pz � kz/A
�

q0q�v
C

q0q C B
C

q0q.mv
�

q0q � pn00r�

q0q/�
d�

0�
q0q .k;k

0/
�23
n00 ifŒ�.�"q � !/B�

q0q C .�pz � kz/A
�

q0q�u
�

q0q C B
C

q0q.muC

q0q � pn00 t�q0q/g�
d�

0�
q0q .k;k

0/
�32
n00 �ifŒ�.�"q � !/B�

q0q � .�pz � kz/A
�

q0q �v
�

q0q CB
C

q0q.mv
C

q0q � pn00r�

q0q/g

For an arbitrary choice of spin operator the reduced wave functions have
the form (5.5.12), so that Œ N'�0

s0 .n
0; p0

z/�˙ become the row matrices N' 0C D
.C 0�

1 ; 0;�C 0�
3 ; 0/, N' 0� D .0; C 0�

2 ; 0;�C 0�
4 / and Œ'�s .n; pz/�˙ become the column

matrices 'C D .C1; 0; C3; 0/, '� D .0; C2; 0; C4/. The matrix elements for the k-
and ?-parts are nonzero only between N' 0

˙, '˙ and for N' 0�, '˙, respectively. The
coefficient of ei. � 0/J n

0�1
n00�n0�1.x/ J

n�1
n00�nC1.x

0/ is the sum of .�"qC!0/, �.�pzCk0
z/,

m times

N' 0C

0
@
�0

�3

1

1
A 'C D

0
@
C 0�
1 C1 C C 0�

3 C3
C 0�
1 C3 C C 0�

3 C1

C 0�
1 C1 � C 0�

3 C3

1
A D b0

s0bs

0
B@
AC
q0q

BC
q0q

A�
q0q

1
CA ;

respectively, and the coefficient of ei. C 0/J n
0�1

n00�n0�1.x/ J nn00�nC1.x0/ is �pn00 times

� N' 0C�2'� D i.C 0�
1 C4 C C 0�

3 C2/ D �sb0
s0b�sA�

q0q:

The explicit forms for the combinations of C 0�s and C s are for the magnetic-
moment eigenfunctions (5.2.12), with Aq̇0q , Bq̇0q defined in Table 7.1. These results
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Table 7.3 Table of the combinations of J -functions that appear in Table 7.2, with
b0

s0 D ."0n0 C s0m/1=2, bs D ."0n C sm/1=2. The combinations of J -functions in
Table 7.1 are modified, denoted by the prime, by (a) multiplication by .�/n0

�n, and
(b) the interchanges x $ x0,  $  0

k˙

q0q b0

s0bsJ
n0

�1
n00

�n0.x0/J n�1
n00

�n.x/˙ s0sb0

�s0b�sJ
n0

n00
�n0.x0/J nn00

�n.x/

l˙q0q sb0

s0b�sJ
n0

�1
n00

�n0.x
0/J nn00

�n.x/˙ s0b0

�s0bsJ
n0

n00
�n0.x

0/J n�1
n00

�n.x/

p˙

q0q b0

s0bse
i. 0

� /J n
0
�1

n00
�n0

C1.x
0/J n�1

n00
�nC1.x/

˙s0sb0

�s0b�se
�i. 0

� /J n
0

n00
�n0

�1.x
0/J nn00

�n�1.x/

q˙

q0q sb0

s0b�se
i. 0

C /J n
0
�1

n00
�n0

C1.x
0/J nn00

�n�1.x/

˙s0b0

�s0bse
�i. 0

C /J n
0

n00
�n0

�1.x
0/J n�1

n00
�nC1.x/

r˙

q0q b0

s0bse
i 0

J n
0
�1

n00
�n0

C1.x
0/J n�1

n00
�n.x/˙ s0sb0

�s0b�se
�i 0

J n
0

n00
�n0

�1.x
0/J nn00

�n.x/

t˙q0q b0

s0bse
�i J n

0
�1

n00
�n0.x

0/J n�1
n00

�nC1.x/˙ s0sb0

�s0b�se
i J n

0

n00
�n0.x

0/J nn00
�n�1.x/

u˙

q0q sb0

s0b�se
i J n

0
�1

n00
�n0 .x

0/J nn00
�n�1.x/˙ s0b0

�s0bse
�i J n

0

n00
�n0.x

0/J n�1
n00

�nC1.x/

v˙

q0q sb0

s0b�se
i 0

J n
0
�1

n00
�n0

C1.x
0/J nn00

�n.x/˙ s0b0

�s0bse
�i 0

J n
0

n00
�n0

�1.x
0/J n�1

n00
�n.x/

reproduce half the terms in the entry for
�
c�

0�
q0q
.k;k0/

�11
n00

in Table 7.1, with p0˙
q0q
; q0˙
q0q

given by  ; x $  0; x0 in the entries p˙
q0q; q

˙
q0q in Table 7.3. The remaining terms

in
�
c�

0�
q0q.k;k

0/
�11
n00

come from the other nonzero matrix elements, N' 0C.�0; �3; 1/'C,

N' 0��2'C. Similar calculations reproduce the other �; � component in Tables 7.1
and 7.2.

In comparing the Ritus method and the vertex formalism, neither has an obvious
major advantage over the other in detailed calculations. Both involve lengthy
calculations. The Ritus method is closer to the conventional method used in the
unmagnetized case to evaluate Feynman amplitudes and transition rates. In the
unmagnetized case one is rarely interested in any spin-dependence, and one averages
over the initial spins and sums over the final spins. This allows rules for evaluating
transition rates to be formulated without requiring a specific choice of spin operator.
The Ritus method allows one to develop an analogous spin-average approach in
the magnetized case. However, the evaluation of the traces is considerably more
cumbersome than in the unmagnetized case, as discussed in � 5.5.6.

7.2 Compton Scattering by an Electron with n D 0

The general form of the probability of Compton scattering in a magnetic field is too
cumbersome to be of direct use in specific applications, and it needs to be replaced
by simpler approximate forms and special cases. An important special case where
the magnetized quantum theory is essential is for scattering by an electron in its
ground Landau state n D 0. In a superstrong magnetic field, gryomagnetic losses
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occur at a very high rate: according to (6.2.20) this rate is of order (in ordinary
units) ˛c.mc2=„/.B=Bc/2 
 1019.B=Bc/

2 s�1. The timescale for an electron to
radiate away all its perpendicular energy can be so short (e.g., for B=Bc of order
unity) that one expects most electrons to be in their ground state, n D 0. The case
of Compton scattering by an electron in the state n D 0 is discussed in this section.

7.2.1 Scattering Probability for n D 0

The probability (7.1.2) for Compton scattering simplifies considerably for an
electron with n D 0, when one has � D �0 D 1 and s D �1. One is free to choose
the frame pz D 0, implying p0

z D k0
z � kz, "n D m. The J -functions in Table 7.3

with upper index n � 1 are identically zero for n D 0, reducing the number of
combinations that appear by one half. After omitting the labels M;M 0 referring to
the modes, assuming RM;RM 0 can both be approximated by 1=2, and neglecting
nonlinear scattering, the probability (7.1.2) reduces to

wCC
q00 .k;k

0/ D e4

4"20j!!0j
ˇ̌
e�
i e

0
j

�
MCC
q00 .k;k

0/
�ij ˇ̌2

2
ı."q0 �m� !0 C!/; (7.2.1)

with "q0 D Œm2 C 2n00eB C .k0
z � kz/

2�1=2. The components of
�
MCC
q00 .k;k

0/
�ij D�

MCC
q00 .k;k

0/
�ij
1

C �
MCC
q00 .k;k

0/
�ij
2

follow from (7.1.14), (7.1.15), and (7.1.17),
which give, for n D 0; pz D 0,

�
MCC
q00 .k;k

0/
�ij
1

D
X
n00

�
cCC
q00 .k;k

0/
�ij
n00
eiF1

2m!0 C !02 � k02
z � 2n00eB

; (7.2.2)

with the phase factor eiF1 D .ie�i /n0

e�in00. 0� /ei.xx0/1=2 sin. � 0/ and

�
MCC
q00

.k;k0/
�ij
2

D
X
n00

�
dCC
q00

.k;k0/
�ij
n00
eiF2

�2m! C !2 � k2z � 2n00eB
; (7.2.3)

with eiF2 D .�ie�i 0

/n
0

ein
00. 0� /e�i.xx0/1=2 sin. � 0/. The components of�

cCC
q00 .k;k

0/
�ij
n00

and
�
dCC
q00 .k;k

0/
�ij
n00

follow from Tables 7.1 and 7.2, respectively,
with the combinations of J -functions in Table 7.3 simplifying to the forms given in
Table 7.4.

The combinations of J -functions in Table 7.4 have relatively simple forms for
small values of n0, specifically J n� .x/ for n D 0; 1; 2; 3 are given by (A.1.47)–
(A.1.50). For example, the exact form for J 0� .x/ is

J 0� .x/ D e�x=2x�=2

.�Š/1=2
; (7.2.4)



Compton Scattering by an Electron with n D 0 319

Table 7.4 The entries in
Table 7.3 reduce to the entries
shown for n D 0, with
b0

˙
D Œ."0n0 ˙m/=2"0n0 �

1=2

k˙

q00 �s0b0

�s0J
n0

n00
�n0.x

0/J 0n00 .x/

l˙q00 �b0

s0J
n0

�1
n00

�n0.x
0/J 0n00 .x/

p˙

q00 �s0b0

�s0e
�i. 0

� /J n
0

n00
�n0

�1.x
0/J 0n00

�1.x/

q˙

q00 �b0

s0e
i. 0

C /J n
0
�1

n00
�n0

C1.x
0/J 0n00

�1.x/

r˙

q00 �s0b0

�s0e
�i 0

J n
0

n00
�n0

�1.x
0/J 0n00 .x/

t˙q00 �s0b0

�s0e
i J n

0

n00
�n0 .x

0/J 0n00
�1.x/

u˙

q00 �b0

s0e
i J n

0
�1

n00
�n0 .x

0/J 0n00
�1.x/

v˙

q00 �b0

s0e
i 0

J n
0
�1

n00
�n0

C1.x
0/J 0n00 .x/

Inserting (7.2.4) and the other relations into the entries in Table 7.4 leads to explicit
forms for small values of n0.

7.2.2 Transitions n D 0 ! n0 � 0

The possible final states, n0, of the electron with n D 0 depend on the frequency,
!0, of the unscattered photon. An electron can be excited to the state n0 only if the
photon energy exceeds the threshold for gyromagnetic absorption 0 ! n0.

Transition Frequency

The frequency for gyromagnetic absorption n D 0 ! n0 is equal to that for the
inverse transition of gyromagnetic emission n0 ! n D 0, with the proviso that the
electron have pz D 0 in the state n D 0. The relevant frequency is determined by
the zero of the denominator in (7.2.2), with n00 replaced by n0. This gives

!n0.� 0/ D m

sin2 � 0

"�
1C B

Bc
2n0 sin2 � 0


1=2
� 1

#
: (7.2.5)

For B=Bc � 1, (7.2.5) reduces to !n0.� 0/ 
 n0˝e, reproducing the familiar
frequency of n0th harmonic gyromagnetic emission for B=Bc � 1. In a general
frame, in which the electron with n D 0 has arbitrary pz, (7.2.5) is replaced by

!n0.� 0/ D Œ."0 � pz cos � 0/2 C 2n0eB sin2 � 0�1=2 � ."0 � pz cos � 0/
sin2 � 0 ; (7.2.6)

with "0 D .m2 C p2z /
1=2. The frequency (7.2.6) reduces to (7.2.5) for pz D 0.
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Scattering for n D 0 ! n0 D 0

If the photon energy is below the threshold required for a transition n D 0 to n0 D 1,
then one has n0 D 0. This applies for photons with !0 < !1.�

0/, with !1.� 0/
given by (7.2.5) with n0 D 1. This leads to a further simplification of the entries
in Table 7.4, with s0 D �1 and l˙

q0q
D q˙

q0q
D u˙

q0q
D v˙

q0q
D 0. A convenient

notation for the resulting expressions is in term of the 3-vectors

e˙ D .1;˙i; 0/; b D .0; 0; 1/: (7.2.7)

Using (7.2.4) and Tables 7.1, 7.2 and 7.4, one finds, for n00 D 0,

�
cCC
000
.k;k0/

�ij
0

D e�.x0Cx/=2

Œ"0
0."

0
0 Cm/�1=2

�
!0."0

0 Cm/C k0
z.k

0
z � kz/

�
bibj ;

�
dCC
000

.k;k0/
�ij
0

D e�.x0Cx/=2

Œ"0
0."

0
0 Cm/�1=2

� � !."0
0 Cm/� kz.k

0
z � kz/

�
bibj ; (7.2.8)

with "0
0 D Œm2 C .k0

z � kz/
2�1=2 and, for n00 � 1,

�
cCC
000
.k;k0/

�ij
n00

D 1

Œ"0
0."

0
0 Cm/�1=2

e�.x0Cx/=2.x0x/n00�1

.n00 � 1/Š
n�
!0."0

0 Cm/C k0
z.k

0
z � kz/

�
e�i. � 0/ eiCej�

C �
!0."0

0 Cm/C k0
z.k

0
z � kz/

�
.x0x=n00/1=2 bibj

C .k0
z � kz/

�
k?ei 

0

eiCbj C k0?e�i bi ej�
�o
; (7.2.9)

�
dCC
000 .k;k

0/
�ij
n00

D 1

Œ"0
0."

0
0 Cm/�1=2

e�.x0Cx/=2.x0x/n00�1

.n00 � 1/Š
n

� �
!."0

0 Cm/� kz.k
0
z � kz/

�
ei. � 0/ ei�e

j
C

� �
!."0

0 Cm/C kz.k
0
z � kz/

�
.x0x=n00/1=2 bibj

� .k0
z � kz/

�
k0?ei ei�bj C k?e�i 0

bie
j
C
�o
: (7.2.10)

The probability (7.2.1) for scattering n D 0 to n0 D 0 in the framepz D 0 reduces to

w000.k;k
0/ D e4

4"20j!!0j 2
ı."
0
00 �m � !0 C !/

ˇ̌
ˇ̌e�
i e

0
j

1X
n00D0

�
ŒcCC
000 .k;k

0/�ijn00e
�i Œn00. 0� /C.xx0/1=2 sin. � 0/�

�2m! C !2 � k2z � 2n00eB

C ŒdCC
000 .k

0;k/�ijn00e
iŒn00. 0� /C.xx0/1=2 sin. � 0/�

2m!0 C !02 � k02
z � 2n00eB


ˇ̌
ˇ̌
2

; (7.2.11)
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with "0
00 D Œm2 C .k0

z � kz/
2�1=2. Further simplification of the probability (7.2.11)

occurs for x; x0 � 1, which corresponds to the cyclotron-like limit discussed in
� 7.3.

The resonance condition restricts the possible final frequencies, !, for given !0.
For scattering by an electron with pz D 0, the recoil implies p0

z ¤ 0, and hence
the energy of the final electron is greater than that of the initial electron. Energy
conservation then requires ! < !0. Using either the resonance condition in the ı-
function in (7.2.11), or setting p˙

nn0 D 0 and n D n0 D 0 in (7.1.6), one finds that
for .kz �k0

z/
2 � m2, the final frequency may be approximated by, in ordinary units,

! D !0
�
1� „!0

mc2
.cos � � cos � 0/2

�
; (7.2.12)

where the refractive index is assumed to be unity.

Scattering n D 0 ! n0 � 1

When the frequency of the initial photon satisfies !0 > !1.�
0/, with !n0.� 0/ given

by (7.2.5), scattering can cause an electron in the ground state, n D 0, to jump to
the first Landau state, n0 D 1. This results in a scattered photon with frequency
! 
 !0 � !1.�

0/. An independent subsequent process is possible: the electron in
the first Landau state can radiate a cyclotron photon, jumping back to the ground
state. This combination of scattering and emission may be regarded as a resonant
form of photon splitting, in which the initial photon effectively splits into the final
photon plus the emitted cyclotron photon. Similarly, for !n0C1.� 0/ > !0 > !n0.� 0/,
the final electron can be in any of the states n0 D 0; 1; : : : ; n0. The electron can
then jump back to the ground state through gyromagnetic emission involving any
sequence of allowed transitions.

The probability of the scattering process is given by setting n0 D 1 in (7.2.1),
which does not simplify in any obvious way. A simplification that occurs for n0 D 0

is that half the entries in Table 7.4 are identically zero, specifically l˙q0q D q˙
q0q D

uq̇0q D vq̇0q D 0, but for n0 � 1 all eight entries in Table 7.4 are nonzero. As a
consequence, the simplified forms (7.2.8)–(7.2.10) that involve only four 3-tensors
formed from the vectors e˙;b do not apply for n0 > 0. Moreover, the two possible
spin states, s0 D ˙1, require that one distinguish between transitions without spin
flip, s0 D �1, and transitions with spin flip, s0 D 1. Significant simplification occurs
if one has x; x0 � 1, when a cyclotron-like approximation applies, as discussed in
� 7.3.

7.2.3 Resonant Compton Scattering

There are resonances in the probability (7.2.11) at the frequencies !0 D !n00.� 0/,
where the denominator in the final term inside the modulus has zeros. The presence
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of a resonance implies enhanced scattering cross section. Near a resonance one may
approximate the probability (7.2.11) by retaining only the term that diverges at
the resonance. Such resonances in Compton scattering are associated with virtual
transitions. A transition n ! n0 involves an intermediate state n00, such that the net
transition may be regarded as a sum (over n00) of virtual transitions n ! n00 ! n0.
A resonance occurs when the transition n ! n00 is allowed, that is, the virtual
intermediate state becomes a real intermediate state. The net transition, n ! n0,
becomes two sequential allowed transitions, gyromagnetic absorption n ! n00 and
gyromagnetic emission n00 ! n0.

Consider the simplest case of resonant scattering: n D 0; n0 D 0; n00 D 1.
Formally, the probability (7.2.11) implies that the cross section becomes infinite
at the resonance, but in practice the cross section remains finite. In particular, the
enhancement factor is limited by the natural linewidth for gyromagnetic emission
from the state n00 D 1 to n0 D 0. In the immediate vicinity of the resonance
at n00 D 1 one needs to take account of the virtual intermediate state becoming
a real intermediate state. The conditions under which one should regard resonant
scattering as an enhanced form of scattering and when one should regard it as a
sequence of two independent processes, gyromagnetic absorption n D 0 ! n00 D 1

and gyromagnetic emission n00 D 1 ! n0 D 0, depends on the relative magnitude
of two frequencies. One of these frequencies is the mismatch, �!0 D !0 � !0

n00 ,
between the frequency of the initial photon and the resonant frequency, !0

n00.�
0/,

determined by (7.2.5). The other is the natural linewidth of the emitted radiation,
which is determined by the inverse of the lifetime of the excited state. The process
should be regarded as scattering if the frequency mismatch exceeds the linewidth
and as absorption and re-emission if the linewidth exceeds the frequency mismatch.

In the present case, the natural linewidth of the n00th Landau state is determined
by the gyromagnetic decay rate, �q00 , for an electron in the state q00 (with q00
including n00). The limitation on the enhancement due to the n00th resonance may be
determined by making the replacement "q00 ! "q00 C i�q00 in (7.1.14), implying that
the minimum value of the resonant denominator is 
 �q00 . For frequencies within
�q00 of the resonance, the intermediate state is real, and the resonant scattering must
be treated as a sequence of absorptions and re-emissions. The occupation number of
electrons in the excited states is then nonzero, and is determined by the ratio of the
probability per unit time of an absorption event to that state divided by the decay
rate from that state.

Resonant Scattering Versus Absorption Plus Emission

When the condition !0 D !n00.� 0/ is satisfied, the electron can absorb the photon,
and jump from the state n D 0 to n00. Subsequent emission of a photon, with the
electron jumping either back to n0 D 0 or to some intermediate state 0 < n0 <
n00, is equivalent to resonant scattering. It is useful to define an effective scattering
probability that includes both limits.
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The effective scattering probability is constructed by combining the probabilities
per unit time for the two transitions, and dividing by the rate of decay of the
intermediate state. This compound probability is

Nwq0qMM 0 .k;k0/ D
X
q00

wq00qM 0.k0/wq0q00M.k/=�q00 ; (7.2.13)

where the sum is over all possible resonances, and where �q00 is the decay rate
of the intermediate state. In the immediate vicinity of the resonance, specifically
within a frequency less than �q00 of the resonant frequency, the effective scattering
probability is given by (7.2.13).

An interpolation between (7.2.13) in the core of the line, and (7.1.2) in the wings
of the line is obtained by replacing the resonant factor by a Lorentzian line profile
with the width determined by the lifetime of the intermediate state. Including the
various crossed processes, an interpolation formula is [10, 14]

Res wCC
q0qMM 0 .k;k

0/ D
X
q00

e4RM.k/RM 0.k0/
"20j!M .k/!M 0.k0/j

ˇ̌
e�
M�.k/

�
� CC0

q0q00 .k/
��ˇ̌2

� ˇ̌
eM 0�.k

0/
�
� CC
q00q .k

0/
��� ˇ̌2 
�q00=2

Œ"q � "q00 � !M.k/�2 C .�q00=2/2

� 2
ıŒ"q � "q0 � !M .k/C !M 0.k0/�: (7.2.14)

The form (7.2.14) reduces to (7.2.13) in the core of the line, j"q � "q00 �
!M.k/j �<�q00=2, and it provides an approximation to resonant scattering in the
wings of the line, j"q � "q00 � !M.k/j �>�q00=2. In the far wings of the line, where
resonant scattering is no longer dominant, the exact probability (7.1.2) needs to
be used. An implication of (7.2.14) is that the maximum enhancement in resonant
scattering is limited by the natural linewidth of the excited state. This quantum
limitation tends to dominate over the nonquantum limitations, due to cold plasma
and thermal effects at low densities in very strong magnetic fields.

7.3 Scattering in the Cyclotron Approximation

Compton scattering by a magnetized electron simplifies in the cyclotron-like
approximation, defined as the limit in which the power series expansion of the
J -functions converges rapidly. The cyclotron-like limit requires that the scattering
electron be nonrelativistic.
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7.3.1 Cyclotron-Like Approximation

Further simplification of the probability (7.2.11) occurs for x0; x � 1, when only
J 00 .x/ 
 1 need be retained in (7.2.9) and (7.2.10). An associated approximation is
that the kinetic energy of the final electron is negligible, "0

0 ! m, except where the
difference "0

0 �m appears explicitly. In this case (7.2.11) reduces to

w000.k;k
0/ D e4

4"20m
2j!!0j

ˇ̌
e�
i e

0
j g

ij
ˇ̌2
2
ı."0

0 �mC !0 � !/; (7.3.1)

with

gij D
�
!0."0

0 Cm/C k0
z.k

0
z � kz/

�
ei. 

0� / ei�e
j
C

2m.! C˝e/� !2 C k2z

C
�
!."0

0 Cm/� kz.k
0
z � kz/

�
e�i. 0� / eiCej�

2m.!0 �˝e/C !02 � k02
z

C
�
!."0

0 Cm/C kz.k
0
z � kz/

2m!0 C !02 � k02
z

C !0."0
0 Cm/� k0

z.k
0
z � kz/

2m! � !2 C k2z

�
bibj : (7.3.2)

Only n00 D 0; 1 contribute in the sum over intermediate states, with n00 D 1

contributing to the term along ei˙e
j
�, and n00 D 0 contributing to the term along

bibj .
The argument of the ı-function In (7.3.1) may be rationalized by writing

ı."0
0 �mC !0 � !/

D "0
0 CmC !0 � !

2m
ı

�
!0 � ! � .!0 � !/2 � .k0

z � kz/
2

2m



; (7.3.3)

which includes the quantum recoil explicitly. When the quantum recoil is neglected,
the right hand side of (7.3.3) reduces to ı.!0 � !/, and gij reduces to

gij D !

! �˝e

e�i. 0� /ei�e
j
C C !

! C˝e

ei. 
0� /eiCej� C 2bibj : (7.3.4)

The probability (7.3.1) then reduces to its nonquantum counterpart (4.5.15).

7.3.2 Scattering in the Birefringent Vacuum

In strong fields, where the electrons are predominantly in the state n D 0, the
contribution of the plasma to the wave dispersion can usually be neglected in
comparison with the contribution from the vacuum polarization. The relevant wave
modes are usually those of the birefringent vacuum.
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The scattering probabilities for the two modes of the birefringent vacuum are
found by inserting the polarization vectors for these modes into (7.3.1). These are

e? D a D .� sin ; cos ; 0/; ek D t D .cos � cos ; cos � sin ;� sin �/;

(7.3.5)

with analogous expressions for the primed vectors. The projection of gij onto the
specific polarizations (7.3.5) gives

0
BB@

g??
gk k
g?k
gk?

1
CCA D

0
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0

2 sin � 0 sin �
0

0

1
CCAC

X
˙

!

! ˙˝e

0
BB@

1

cos � 0 cos �
˙i cos �
�i cos � 0

1
CCA : (7.3.6)

On inserting (7.3.6) into (7.3.1) one may compare the rates of scattering for the
different modes, ?!?; k, k!?; k. When the quantum recoil term is neglected in
the resonance condition, implying ! D !0, the cross sections for these scatterings
are simply related to the Thomson cross section, �T D .8
=3/.�0e

2=4
m/2. These
cross-sections are [3]

0
BB@

�??.� 0; �/
�kk.� 0; �/
�?k.� 0; �/
�k?.� 0; �/

1
CCA D 9�T
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8̂
<̂
ˆ̂:

0
BB@

0
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0

0

1
CCAC 1

.1 � Y 2/2

0
BB@

1

cos2 � 0 cos2 �
Y 2 cos2 �
Y 2 cos � 0

1
CCA

9>>=
>>;
;

(7.3.7)

with Y D !=˝e. The total cross section implied by (7.3.7) reduces to the Thomson
cross section after averaging over the initial and summing over the final states
polarization, averaging over cos � 0 and cos � , and setting Y ! 0.

A notable feature of (7.3.7) is the singularity that occurs in each cross section
for Y D 1. This corresponds to resonant Compton scattering, which is of specific
interest in connection with secondary pair production in the polar cap region of
pulsars [6, 7, 13, 20]. The scattering of thermal photons from the surface of the
neutron star by a highly relativistic “primary” particle in the state n D 0 is greatly
enhanced when the frequency of the thermal photon, transformed to the rest frame
of the primary particle, is equal to the cyclotron frequency. The scattered photon is
then of high energy in the pulsar frame.

7.3.3 Inverse Compton Scattering

Thomson scattering of photons by highly relativistic electrons is referred to as
inverse Compton emission in the astrophysical literature. The quantum theory
of scattering by highly relativistic electrons in a strong magnetic field has been
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discussed in detail only in one special case (n D 0, x0 D 0) [8]. In this section,
the scattering for x0 D 0 is discussed, and some remarks are made about the
generalization to x0 ¤ 0. A notable new feature for x0 ¤ 0 is that a resonance
occurs in the cross section associated with the threshold for pair-creation.

7.3.4 Special Case n D 0, x0 D 0

The simplifying assumption made in � 7.3 involves the initial electron, which is
assumed to be in the ground state n D 0. Another simplifying assumption is that
the initial photon is propagating along the magnetic field. The argument, x0, is then
zero, and then J n

0

n00�n0.x
0/ is zero for n00 ¤ n0 and unity for n00 D n0. Then the only

J -functions that appear, J n� .x/, are the same as for gyromagnetic emission.
It has been argued [8] that the special case of parallel propagation is relevant to

Compton scattering by a highly relativistic electron, � 	 1. The argument is that
if one considers the scattering in the frame in which the electron is at rest, pz D 0,
the Lorentz transformation to this frame transforms the angle, � 0, of propagation
of nearly all photons into a small cone of angles, � 0 �<1=� . The suggestion is that
one may treat inverse Compton scattering in terms of the scattering of a parallel-
propagating photon, � 0 D 0, by an electron with pz D 0 [8], and that this is a valid
approximation for � 	 1.

Consider the special case n D 0 and x0 D 0. The cross section for inverse
Compton scattering is shown in Fig. 7.2, where the final Landau quantum number
is denoted n0 ! ` and the cyclotron frequency is denoted ˝e ! !B . The most
obvious feature of the cross section is the singularity at the cyclotron frequency,
which corresponds to resonant Compton scattering. The dependence of the cross
section on the polarization of the initial and final photons is shown in Fig. 7.3,
where the two linear polarizations are those of the natural modes of the birefringent
vacuum.

However, the argument that inverse Compton scattering may be approximated
by the case x0 D 0, in the frame pz D 0, ignores the fact that x0 is an invariant.
The assumption x0 
 0 must apply in all frames. In particular, for � 0 ¤ 0, one can
transform to the frame in which sin � 0 is equal to unity, and in this frame x0 � 1

requires !02 � 2eB � 2m2.B=Bc/, or !0=2m � .2B=Bc/
1=2. The assumption

x0 D k02?=2eB � 1 is overly restrictive in general.

PC-Induced Resonant Compton Scattering

A new feature of inverse Compton scattering that is excluded by the assumption
x0 D 0 is a pair-creation (PC) associated resonance (Weise JI, 2011, private
communication). This occurs when the resonance condition passes through a
threshold for PC. There is a close analogy between the threshold singularities in the
gyromagnetic absorption (GA) and PC absorption coefficients, both of which occur
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Fig. 7.2 The ratio of the Compton cross section to the Thomson cross section is plotted as a
function of the incident photon energy (in units of the cyclotron energy) for B D 0:1; 1; 10; 100

in units of Bc . Solid curve: exact cross section; dot-dashed curve: nonrelativistic approximation;
dotted curve: Klein-Nishina limit; dashed curve: case with only ` D 0 (see text) (From [8],
reprinted with permission AAS)

at gnn0 D 0, due to a factor .gnn0/1=2 in the denominator. Similarly, the scattering
cross section includes a factor .Gnn0/1=2 in the denominator, leading to a singularity
at Gnn0 D 0, with Gnn0 given by (7.1.5). The zero at ˝2 �K2

z D ."0n � "0n0/
2 leads

to resonant Compton scattering, which occurs at the cyclotron frequency in the case
n D 0, x0 D 0 in the frame pz D 0. The new effect, PC-induced resonant Compton
scattering, occurs at the threshold˝2 �K2

z D ."0n C "0n0/
2.

The existence of PC-induced resonant Compton scattering may be understood
by analogy with resonant Compton scattering (RCS). One may interpret RCS in
terms of the scattering process breaking up into two sequential real processes:
gyromagnetic absorption of the initial photon by the initial electron into a real
intermediate state consisting of an electron, and gyromagnetic emission by this
intermediate electron to produce the final photon. The resonance occurs as the
threshold for this break up into two first order processes is approached. In PC-
induced resonant Compton scattering, the intermediate state is a virtual positron
that becomes a real positron at the resonance. The threshold for this break-up into
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Fig. 7.3 As for Fig. 7.2 showing the dependence on polarization (From [8], reprinted with
permission AAS)

two first-order processes is at ˝2 � K2
z D ."0n C "0n0/

2. The break up is into two
separate processes: the initial photon converts into a pair, consisting of the final
electron and the intermediate positron; and the initial electron annihilates with the
intermediate positron to produce the final photon. PC-induced resonant Compton
scattering occurs when the beat, at K� D k� � k0�, between the initial and final
photons, satisfies a threshold condition for PC.

The PC-induced resonances do not occur for x D 0 or x0 D 0. As with PC
itself, near resonance one can choose any of three frames in which one of the beat
disturbance, the initial photon or the final photon is propagating across the field
lines, corresponding to Kz D 0, k0

z D 0 or kz D 0, respectively. The perpendicular
wavenumbers, K?; k0?; k?, are invariant under the Lorentz transformations to any
of these frames. The condition (6.4.6) implies that PC-induced resonance, at given
n; n0, requires x0 > ."0nC"0n0/

2=2eB > 1. This requirement implies that PC-induced
resonance is likely to be of most interest in the limit of supercritical fields, B 	 Bc .

7.4 Two-Photon Processes

Processes in which there are two photons in the initial or final state and no photons
in the other state include double emission and double absorption, two-photon pair
creation and pair annihilation into two photons. Two-photon gyromagnetic emission
is allowed under the same conditions as one-photon gyromagnetic emission, and
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because it is a higher order process it occurs at a rate of order ˛c slower than the
one-photon process. Similarly, two-photon pair creation and annihilation compete
with one-photon pair creation and annihilation, respectively. These two-photon
processes are treated here as crossed forms of Compton scattering, given by
the probability (7.1.2). Investigations of these processes have been motivated by
astrophysical applications [1, 2, 15, 16].

7.4.1 Kinetic Equations for Two-Photon Processes

Kinetic equations can be written down by considering the rate of transitions
between different states, analogous to the derivation of the kinetic equations for
gyromagnetic processes in � 6.1.3.

Kinetic Equations for Double Emission

Two-photon (or “double”) emission is related to Compton scattering by making
the crossing transformation k0 ! �k0, with !0 ! �!0, e0 ! e 0�, in the
probability (7.1.2). This converts the initial photon into a final photon, so that there
are two final photons and no initial photon.

The kinetic equations for two-photon emission and absorption, between states
q0; q involving photons in the modesM;M 0, are
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where q0 denotes the quantum numbers n0; s0; p0
z D pz � k0

z � kz and q00 denotes
n00; s00; p00

z D pz C k0
z C kz. The term on the right hand side of each of (7.4.1)

that is independent of NM.k/;NM 0.k0/ describes the effect of spontaneous double
emission. This term is intrinsically quantum mechanical.

Kinetic Equations for Two-Photon Pair Creation

The kinetic equations for the photons due to two-photon pair creation and annihila-
tion are
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plus an analogous equation with primed and unprimed quantities interchanged. The
corresponding kinetic equations for the electrons and positrons are
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In practice one usually considers pair annihilation in the absence of photons,
NM.k/ D 0, NM 0.k0/ D 0, and pair creation in the absence of other particles,
nC
q D n�

q0 D 0.

7.4.2 Double Cyclotron Emission

Consider an electron in an initial state q corresponding to a Landau state n. The
electron can jump to lower Landau states, n0 < n, through gyromagnetic emission
of a single photon. However, it can also make the jump emitting two photons
simultaneously, with the sum of the frequencies of the two photons being equal to
that of the single photon in one-photon emission. These two processes compete, and
the ratio of the rates of transition determines the relative probability of the transition
occurring due to the two processes. This ratio is referred to as a branching ratio.
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Fig. 7.4 The function F.y/
that describes the frequency
dependence of double
cyclotron emission is plotted
as a function of y D !=˝e

(After [14])

The transition from the first excited state, n0 D 1; s0 D �1, to the ground state,
n D 0, in the nonrelativistic approximation, kz; k

0
z � m, x; x0 � 1, averaged over

polarizations and over angles [14] gives (ordinary units)
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with y D !=˝e and
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The function F.y/ is plotted in Fig. 7.4 as a function of y D !=˝e , and (ignoring
the quantum recoil) y0 D !0=˝e D 1 � y. The emission has an infra-red
divergence at y ! 0 or y ! 1, corresponding to the one of the two photons
having an arbitrarily low frequency. The function F.y/ is well approximated by
F.y/ 
 4Œ1C y3=.1� y/C .1 � y/3=y�.

One application of double cyclotron emission is to X-ray pulsars, where the X-
ray emission is from an accretion column containing hot, X-ray emitting gas. The
column is optically thick at the cyclotron line, implying that cyclotron photons are
emitted and absorbed many times before escaping. A problem in understanding
emission in such a context is the ultimate source of photons: the dominant
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processes is Compton scattering, which conserves the number of photons. Double
cyclotron emission implies a nonzero branching ratio for two-photon and one-
photon cyclotron emission. Double cyclotron emission provides a source of soft
photons, which can be (Compton) scattered up to X-ray frequencies before escaping.
Suppose a typical cyclotron photon is absorbed and re-emitted (an average of) N
times before it escapes. After each absorption, there is a probability, equal to this
branching ratio, that the subsequent re-emission is two-photon, rather than single
photon. Two-photon emission can be an important source of new photons ifN times
the branching ratio is greater than unity.

7.4.3 Two-Photon Pair Creation and Annihilation

The probability of two-photon pair creation or annihilation is given by (7.1.2) with
�0 D ��. The kinetic equations for these processes are written down in (7.4.2) and
(7.4.3).

Two-Photon Pair Creation

It is helpful to distinguish two cases for two-photon pair creation: when the two
photon have comparable energies, and when one photon is hard and the other is soft.
In the former case, each photon must have an energy !�>m, requiring photons in
the MeV range. In the latter case a photon with a higher energy can decay into a pair
by interacting with a soft photon. The latter process is of interest in models for active
galactic nuclei (AGN) where there is a simple way of estimating its importance. The
cross section for the process is of order the Thomson cross section, �T . Suppose the
temperature of the hot gas in the AGN is known, so that the number density, n� , of
soft photons is known in a region of thickness L. Two-photon pair creation needs
to be taken into account for �T n�L�>1. Observation of hard photons from an AGN
where this condition is satisfied implies that pairs are being created in the source.

Inclusion of a magnetic field in two-photon pair creation [11] is important for the
application to magnetized neutron stars. The absorption coefficient for the photons
involved in two-photon pair creation may be defined in an analogous way to that
for one-photon pair creation, cf. (6.4.2). After integrating over the distribution of
photons in the mode M 0, the absorption coefficient for photons in the mode M
becomes

�M .k/ D
X

n;n0;s;s0

eB

2


Z
dpz

2


Z
d3k0

.2
/3
wC�
q0qMM 0.k;k

0/NM 0.k0/: (7.4.6)

For pair creation by a single distribution of photons, with !�>m, the labels M;M 0
may be interpreted as labeling the polarization of the photons, e.g., M;M 0 D?; k
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for the two modes of the birefringent vacuum. ForM D M 0, when the two photons
are from the same distribution, an additional factor of 1=2 needs to be included, e.g.,
in the definition of the probability, to avoid double counting. In the case of a hard
photon decaying into a pair by interacting with a soft photon, the hard photons may
be identified with the labelM , in (7.4.6), and the soft photons with the label M 0.

Qualitatively, many of the properties of two-photon pair creation can be un-
derstood in terms of the properties of one-photon pair creation and of Compton
scattering. For nonrelativistic pairs, there is a sequence of thresholds corresponding
to different values of n; n0. As for one-photon pair creation, the integral over pz

in (7.4.6) may be evaluated using the ı-function, to give an expression with a
factor Gnn0 in the denominator, cf. (6.4.3). As for one-photon pair creation, the
factor 1=Gnn0 leads to square root singularities in the cross section, specifically at
.!C!0/2 � .kz C k0

z/
2 D ."n C "0

n0/
2. A comparison of one-photon and two-photon

pair creation in a mildly relativistic thermal plasma led to an estimate that the one-
photon process dominates for B=Bc �>0:02 [4].

Two-Photon Versus One-Photon Pair Annihilation

The annihilation of a pair into two-photons in a strong magnetic field competes with
annihilation into one photon. Although the two-photon process is of higher order,
the kinematic conditions for it to occur are less restrictive than for the one-photon
process. The annihilation rate depends on the Landau levels of the electron and
positron. For the simplest case when both are in their ground state, n D n0 D 0,
with energy " in the center-of-mass frame, the cross section for annihilation into
one photon is [19] (ordinary units)

�1� ."/ D nC
0 ."/n

�
0 ."/

2
2˛c„c
p"B=Bc

expŒ�2."=mc2/2.B=Bc/�1�; (7.4.7)

where " and p are the energy and momentum of the electron and positron, and
n0̇ ."/ are their occupation numbers. The energy of the photon into which they
annihilate is 2". The exponential facto in (7.4.7) arises from jJ 00 .x/j2 D e�x with
x D .2"=mc2/2.Bc=2B/. This factor suppresses the one-photon process for small
B=Bc , and there is no analogous suppression for annihilation into two-photons [5].
As a consequence of this suppression, it was estimated [19] that the two-photon
process dominates for B=Bc �<0:24 and the one-photon process for B=Bc �>0:24.

7.5 Electron–Ion and Electron–Electron Scattering

Particle-particle scattering is a second order process in QED. In the absence of a
magnetic field, Mott scattering provides a simple model for electron-ion scattering
in which the ion is replaced by a fixed charge at the origin; the neglect of the recoil
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of the ion can be justified as an approximation of lowest order in an expansion in the
ratio of the masses of the electron and the ion. There is no such simplification for
electron-electron scattering, called Møller scattering in QED. The generalization of
these two processes to include a magnetized field are discussed in this section.

7.5.1 Collisional Excitation by a Classical Ion

In the discussion below emphasis is placed on collisionless processes. The general
theory may also be used to treat the effects of collisions between particles. The
simplest example is a collision between an electron and an ion, with the ion treated
as an unmagnetized classical particle with charge Q and mass M . Two processes
are of interest: non-radiative transitions and bremsstrahlung.

Collisional excitation or de-excitation of an electron or positron through interac-
tion with an external field is described by the Feynman diagram for Mott scattering,
cf. Fig. 7.3 of volume 1. The probability per unit time for an electron initially in the
state q to be in the state q0 after interacting with the ion is

wQq0q D lim
T!1

e2

T

Z
d4k

.2
/4

ˇ̌
ˇA.Q/��.k/ Œ�

�0�
q0q .k/�

�
ˇ̌
ˇ
2

2
ı.�"q � �0"q0 � !/; (7.5.1)

where T is a normalization time. The 4-potentialA.Q/.k/ of the classical ion is

A.Q/�.k/ D eikx0QD��.k/u� 2
ı.kU /; (7.5.2)

where U is the 4-velocity of the ion whose orbit is assumed to be of the from x� D
x
�
0 C U�� , with x�0 ; U

� constant and with � the proper time. The ı-function in the
classical form (7.5.2) appears squared in the probability (7.5.1), where one writes
Œ2
ı.kU /�2 D .T=�/2
ı.kU /, where � is the Lorentz factor of the particle. The
normalization time, T , cancels with the factor 1=T in (7.5.1). The purely classical
result can be generalized to a semi-classical form that takes the recoil of the ion into
account. This generalization involves the replacement

ı.kU / ! M

E
ı.E 0 �E � !/; (7.5.3)

in (7.5.1), with E D .M2 C P2/1=2, P D �MV , � D 1=.1 � V 2/1=2, E 0 D
.M2 C P 02/1=2, P 0 D P � k. One is free to choose the frame in which the ion is
at rest, and then in the Coulomb gauge the 4-potential has only a time-component.
This is

A.Q/0.k/ D eikx0
Q2
ı.!/

4
"0jkj2KL.!;k/
; (7.5.4)
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which is the electrostatic potential of the ion, with KL.!;k/ the longitudinal part
of the dielectric tensor. In this case the (7.5.1) gives

wQq0q D e2Q2

.4
"0/2

Z
d3k

.2
/3

ˇ̌
ˇŒ� �0�

q0q .k/�
0
ˇ̌
ˇ
2

fjkj2KL.0;k/g2 2
ı.�"q � �0"q0/: (7.5.5)

The ı-function in (7.5.5) can be satisfied only for �0 D �, and then (7.5.5) describes
collisional excitation or de-excitation of an electron (� D 1) or a positron (� D �1)
as a result of the interaction with the ion.

The foregoing discussion of scattering of an electron by an ion involves a major
simplifying assumption: the ion is treated as a classical particle, so that only its
Coulomb field need be considered. A more rigorous treatment requires that the
particle be treated quantum mechanically.

7.5.2 Electron–Electron (Møller) Scattering

The Feynman diagrams for electron-electron scattering are the same as in the
absence of a magnetic field, cf. Fig. 7.10 of volume 1. It is convenient to denote
the initial states of the two electrons by 1; 2 and the final states by 3; 4. Specifically,
the label 1 denotes a set of quantum numbers q1 D .p1z; p1y; n1; s1/, and similarly
for 2; 3; 4. It is then convenient to describe the scattering as 1; 2 ! 3; 4. The two
different diagrams, for given initial states 1; 2, are related by the final states of the
two electrons being interchanged, 3 $ 4. The scattering amplitude for this process
involves four vertex functions: for one diagram the vertex functions Œ� CC

q1q3
.k/��,

Œ� CC
q2q4

.�k/�� appear, where k is the 4-momentum transfer. It is convenient to
simplify the notation by writing these as Œ�13.k/��, Œ�24.�k/�� , respectively. For the
other diagram the vertex functions that appear are Œ�14.k0/��, Œ�23.�k0/�� , where
k0 is the 4-momentum transferred. This simplified notation is also applied to the
energies, "q1 .p1z/ ! "1, and so on.

One is usually not interested in the location of the centers of gyration of the
electrons, and the average over the initial positions and the sum over the final
positions are performed. The average transition rate then becomes

Nwi!f D e4
dp3z

2


dp4z

2

2
ı.p1z C p2z � p3z � p4z/ 2
ı."1 C "2 � "3 � "4/

�
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/4
2
ı.p1z � p3z C kz/ 2
ı."1 � "3 C !/

� ˇ̌��31.�k/
���
�42.k/

��
D��.k/

ˇ̌2

C
Z

d4k

.2
/4
2
ı.p2z � p3z C kz/ 2
ı."2 � "3 C !/
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�ˇ
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�
;

(7.5.6)

where “c.c.” denotes complex conjugate.
A case of particular interest is scattering of an electron initially in its ground

state into an excited final state. This is relevant for cyclotron emission from the
thermal plasmas in the polar cap of X-ray pulsars. A problem in understanding
such cyclotron emission is the origin of the cyclotron photons. In such a strong
magnetic field, the electrons all relax rapidly to their ground state, and the only
possible source of cyclotron photons is some non-radiative process that excites
the electron to a higher Landau state, when the resulting gyromagnetic emission
produces cyclotron photons. An early calculation of the transition probability used
the Johnson-Lippmann wavefunctions [12]. The transition rate calculated using the
more appropriate magnetic-moment eigenfunctions [18] leads to the probability

Nwi!f D ˛2c2


eB
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.xy/n=2e�.xCy/

.x2 CQ2/.y2 CQ2/
RaRb



;

(7.5.7)

where the electrons labeled 1,2,4 are in their ground state and that label 3 is in its
nth Landau state. In deriving (7.5.7), the photon propagator is assumed to have its
vacuum form, D��.k/ / 1=k2. The functions Ra;Rb depend on the spin of the
electron, with

�
Ra

Rb


ˇ̌
ˇ̌
nsf

D
�
A31A42 � B31B42

A32A41 � B32B41



;

�
Ra
Rb


ˇ̌
ˇ̌
sf

D .2neB/1=2

"0n Cm

�
B31A42 � A31B42
B32A41 � A32B41



;
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Aab D 1C pzapzb

."a C "0a/."b C "0b/
; Bab D pza

"a C "0a
C pzb

"b C "0b
; (7.5.8)

with "0a D m for a D 1; 2; 4, and where non-spin-flip (nsf) transition corresponds to
the 3-state having s D �1 and the spin-flip (sf) transition corresponds to the 3-state
having s D 1.
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Chapter 8
Magnetized Vacuum

The magnetized vacuum has dispersive properties similar to a material medium. Its
response may be described by a hierarchy of response tensors, which are functions
of B=Bc . The linear response tensor, referred to as the vacuum polarization tensor,
has a relatively simple form, first derived in the 1930s, that applies at frequencies,
! � 2m, well below the pair-creation threshold. In this limit the linear and
nonlinear response tensors may be derived from the Heisenberg-Euler Lagrangian,
which includes a static electric field as well as a static magnetic field. When the low-
frequency approximation is not made, the linear response tensor may be calculated
from the Feynman amplitude for the bubble diagram. As in the unmagnetized case,
this amplitude diverges, and it needs to be regularized. The magnetic field introduces
no new divergences, so that the difference between the tensors for B=Bc ¤ 0 and
their limits for B=Bc ! 0 are necessarily divergence-free. The quadratic nonlinear
response tensor of the magnetized vacuum is nonzero for B=Bc ¤ 0, and it allows
a three-wave interaction, referred to as photon splitting.

The linear response of the magnetized vacuum is derived from the amplitude
of the bubble diagram in � 8.1. Schwinger’s proper-time method is introduced in
� 8.2, and used to derive a generalization of the Heisenberg-Euler Lagrangian.
The inclusion of a homogeneous electrostatic field in the magnetized vacuum is
discussed � 8.3. The properties of waves in the magnetized (birefringent) vacuum
are derived in � 8.4. Photon splitting is discussed in � 8.5.

8.1 Linear Response of the Magnetized Vacuum

The linear response tensor for a magnetized vacuum is derived by regularizing the
amplitude of the bubble diagram.
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340 8 Magnetized Vacuum

8.1.1 Vacuum Polarization Tensor

There are several different methods of calculation of the linear response of the
magnetized vacuum, referred to as the vacuum response tensor. The regularized
form of the tensor can be written in term of three invariants, and the objective in
calculating the vacuum response is to find forms for these invariants.

Methods of Calculation

A variety of different methods have been used to calculate the linear response tensor
for a magnetized vacuum. These fall into three general classes: the Heisenberg-Euler
approach, a dispersion-integral approach, and an S -matrix approach.

The properties of the two natural modes of the birefringent vacuum were first
derived in the early 1930s [12, 34] using Dirac’s model of a sea of filled negative
energy states. The energy eigenstates of an electron in a magnetic field are different
from those of an electron in the absence of a magnetic field. Summing over
the energies of the electrons in the filled negative energy states gives an infinite
result, but there is a finite energy difference, that depends on B=Bc , between
the magnetized and the unmagnetized cases. This difference is identified with
the Heisenberg-Euler Lagrangian [12], from which the wave properties can be
calculated. This is one example of a more general feature of magnetized QED:
infinities that exist in unmagnetized QED also exist in magnetized QED, but
the differences between the magnetized and unmagnetized is finite and leads to
observable effects. The singularities that occur in the Feynman amplitudes need
to be removed by a regularization procedure. In this case the (negative) energy of
the electrons in the Dirac sea is infinite, the correction to it for B=Bc ¤ 0 is finite,
and the regularization procedure is to subtract the infinity. The Heisenberg-Euler
Lagrangian approach applies only in the low-frequency limit, below the threshold,
! D 2m, for one-photon pair creation.

The second approach is based on a calculation of the absorption for one-photon
pair creation in the magnetized vacuum. As discussed in � 6.4, one-photon pair
creation can be treated as an absorption-like process in which a photon transforms
into an electron-positron pair. The absorption coefficient for this process can
be calculated using QED, specifically, using the relativistic quantum theory for
gyromagnetic processes. Dispersion is related to absorption through the Kramers-
Kronig relation, and the absorption coefficients for the two natural modes of the
magnetized vacuum lead to expressions for relevant components of the linear
response tensor [10, 18, 27]. This method avoids the singularities that appear in
the Heisenberg-Euler and in the S -matrix approach. The method gives only two
transverse components of the response tensor; the complete response tensor includes
a third (longitudinal) component in a magnetized vacuum.

In the S -matrix approach the linear, quadratic and cubic response tensors are
related to the Feynman amplitudes for the bubble, triangle and box diagrams, respec-
tively. The amplitude for the bubble diagram diverges and requires regularization to



8.1 Linear Response of the Magnetized Vacuum 341

derive the vacuum polarization tensor. Regularization is straightforward for the two
components that may be derived using the dispersion-integral approach, as these
must vanish in the limit B=Bc ! 0. However, the remaining component includes
the divergence that exists in the unmagnetized limit, and simply subtracting the limit
for B=Bc ! 0 does not suffice for this component.

Two superficially different forms of the polarization tensor for the magnetized
vacuum are derived by using different forms for the electron propagator in cal-
culating the amplitude for the bubble diagram. One derivation involves using the
Géhéniau form (5.3.13) of the propagator for a magnetized electron. The other
derivation is based on the vertex formalism, and involves a double sum over particles
states. Physically, the response is interpreted in terms virtual electrons and positrons
in the vacuum making transitions between the two states, summed over all states. A
generalization of this method allows one to calculate the response of an electron gas
by including real electrons and positrons, as described in detail in � 9.1.

Discarding Unacceptable Tensor Components

Regularization of the vacuum polarization tensor involves several steps, the first of
which are to identify its tensorial form and to discard components that are not of
this form. In the unmagnetized case, there is only one acceptable tensorial form,
/ k2g�� � k�k� , and terms in the unregularized tensor that are not of this tensorial
form are ignored, so that the vacuum response is described by a single invariant (the
constant of proportionality). In the magnetized case there are two other acceptable
tensorial forms, and terms that are not of one of the three forms are discarded.

The vacuum polarization tensor must be symmetric: an antisymmetric part
would imply a gyrotropic part of the response, and charge-conjugation symmetry
(interchange of electrons and positrons) implies this is zero. A symmetric 4-tensor
has six independent components, and the charge-continuity and gauge-invariance
conditions reduce the number of possible independent variables to 4. However, from
the available 4-vector, k�, and 4-tensor, f �� , one can construct only three indepen-
dent 4-tensors that satisfy the charge-continuity and gauge-invariance conditions,
and the vacuum response can be described by invariant components along these
4-tensors.

Invariant Components

A convenient choice of the three basis 4-tensors is the set introduced in (1.1.22). For
k� D .!; k?; 0; kz/ the first two of these basis 4-vectors are

b
�
1 D k

�
G D .0; 0; k?; 0/; b

�
2 D k

�
D D 	�˛k˛ D .kz; 0; 0; !/: (8.1.1)
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The regularized vacuum polarization tensor can have invariant components corre-
sponding to three 4-tensors, which may be chosen to be

f
��
0 D g�� � k�k�

k2
; f

��
1 D k

�
Gk

�
G

k2G
; f

��
2 D k

�
Dk

�
D

k2D
; (8.1.2)

with k2G D �k2?, k2D D �.k2/k. Thus the physically relevant part of the tensor may
be written in the form

˘��.k/ D
2X
iD0

˘i .k/f
��
i : (8.1.3)

It is sometimes convenient to write the three invariants ˘i.k/ in terms of �i .k/,
defined by

�0˘0.k/ D �0.k/

k2
; �0˘1.k/ D �1.k/

k2?
; �0˘2.k/ D �2.k/

!2 � k2z
: (8.1.4)

The vacuum response tensor then becomes

�0˘
��.k/ D �0.k/.k

2g�� � k�k�/� �1.k/k
�
Gk

�
G � �2.k/k

�
Dk

�
D: (8.1.5)

Unregularized Invariant Forms

The initial step in the regularization procedure is to discard the terms in the response
tensor that do not correspond to components along the 4-tensors (8.1.2). Assuming
the regularized tensor is of the form (8.1.3), the three invariants may be identified.
For example, one can calculate the three invariants from ˘��.k/ using

˘�
�.k/ D 3˘0.k/C˘1.k/C˘2.k/;

k
�
Gk

�
G˘��.k/ D �k2?˘1.k/; k

�
Dk

�
D˘��.k/ D �.k2/k˘2.k/: (8.1.6)

8.1.2 Unregularized Tensor: Géhéniau Form

The unregularized vacuum polarization tensor follows from the amplitude for
the bubble diagram, and this amplitude involves electron propagators. Choosing
the propagators in the Géhéniau form (5.3.12) leads to a coordinate form for the
response tensor.
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Response Tensor in Coordinate Space

The vacuum response tensor in coordinate space is obtained by the same procedure
used to calculate the corresponding tensor in the unmagnetized case, cf. � 8.1 of
volume 1. The Feynman amplitude of the bubble diagram gives

˘��.x � x0/ D �ie2Tr Œ��G.x; x0/��G.x0; x/�: (8.1.7)

The propagator in the Géhéniau form is given by (5.3.13), that is, G.x; x0/ D
�	.x; x0/�.x � x0/, where 	.x; x0/ is a phase factor that depends separately on
x, x0. In (8.1.7) the phase factors cancel. Thus (8.1.7) reduces to

˘��.x � x0/ D �ie2Tr Œ���.x � x0/���.x0 � x/�; (8.1.8)

with �.x/ given by (5.3.14), which is written as an integral over � of a function,
B.�; x/, given by (5.3.15). The trace over the Dirac matrices in (8.1.8) reduces to

d��.�; �0; x/ D Tr Œ��B.�; x/��B.�0;�x/�: (8.1.9)

The resulting expression for the unregularized response tensor is
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(8.1.10)

It is convenient to change the variables of integration in (8.1.10) to
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(8.1.11)

and to Fourier transform before evaluating the trace in (8.1.9).

Fourier Transform of the Unregularized Response Tensor

The Fourier transform of (8.1.10) involves integrals that can be reduced to the form
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and derivatives of this integral. Writing
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and using (8.1.12), one finds
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4a?

C i.k2/k
4ak

�
: (8.1.14)

With J �

? .k/ D �i@J .k/=@k?�, J �

k .k/ D �i@J .k/=@kk�, one finds

J �

? .k/ D �
k
�

?=2a?
�
J .k/; J �

k .k/ D
�
k
�

k =2ak
	
J .k/: (8.1.15)

Integrals with higher powers of x?; xk in the integrand are evaluated in the same
manner, corresponding to the replacements

x
�

? ! k
�

?
2a?

; x
�

k ! k
�

k
2ak

; a? D �eB
2

sin ˛

cos˛ � cosˇ
; ak D eB˛

˛2 � ˇ2
:

(8.1.16)

The Fourier transform of (8.1.10) gives

˘��.k/ D e2m2
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Z 1
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˛

Z ˛
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dˇ d��.k; ˛; ˇ/ exp
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� i

˛

L
C i
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4˛L
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C i

2L

�
˛2 � ˇ2

2˛
C cos˛ � cosˇ
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k2?
m2

�
; (8.1.17)

with L D B=Bc , Bc D m2=e.
The tensor d��.k; ˛; ˇ/ is defined by the replacements (8.1.11) and (8.1.16)

in (8.1.9). Specifically, in (8.1.9) one makes the replacement

B.�; x/
eB

!
�
.˛ C ˇ/.�k/k

4ak
� k?
4a?

�
�1 cot

˛ C ˇ

2
C �2


�

�
cot

˛ C ˇ

2
� i˙z



; (8.1.18)

with .�k/k D �0! � �3kz, and with �1; �2 the components of γ along e�1 D
Œ0;k?=k?�, e�2 D Œ0;b � κ�, respectively. The replacement for B.�0;�x/ is given
by (8.1.18) with k ! �k, ˇ ! �ˇ.

The regularized tensor must be nongyrotropic, and in a frame with B along the
3-axis and k in the 1–3 plane, this implies that one must discard the components
d02; d 12; d 32 and d20; d 21; d 23, where the arguments k; ˛; ˇ are omitted. The only
part of the tensor d��.k; ˛; ˇ/ in the integral (8.1.10) that can contribute is the part
that is symmetric and is an even function of k and ˇ. Hence one is to discard terms
that do not satisfy

d��.k; ˛; ˇ/ D d��.k; ˛; ˇ/ D d��.�k; ˛; ˇ/ D d��.k; ˛;�ˇ/: (8.1.19)
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A straightforward way of removing the unacceptable terms is to construct the three
invariant components (8.1.4).

Unregularized Invariant Components

The unregularized form for˘i.k/ follows from (8.1.17), (8.1.3) and (8.1.6):

˘i.k/ D e2m2

.2
/2

Z 1

0

d˛

˛

Z ˛

0
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� i
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C i
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4˛L
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m2

C i

2L

�
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2˛
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sin˛



k2?
m2

�
; (8.1.20)

with di defined by writing d�� D P2
iD0 dif

��
i . One finds

d0.k; ˛; ˇ/ D cosˇ

2 sin˛

�
1 � ˇ tanˇ

˛ tan ˛
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m2
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�
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sin3 ˛
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2 sin˛

�
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�
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m2
;

d2.k; ˛; ˇ/ D
�
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2˛2 tan ˛
� cosˇ

2 sin˛

�
1 � ˇ tanˇ
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�
!2 � k2z

m2
: (8.1.21)

The integral over ˛ in (8.1.20) diverges in the limit ˛ ! 0 for d0, but not for d1, d2.

8.1.3 Regularization of the Vacuum Polarization Tensor

The regularization of the vacuum polarization tensor involves subtracting divergent
terms from the invariant coefficients˘i.k/ or �i .k/.

Regularization of ˘0.k/

The unregularized expression for˘0.k/ may be regularized by subtracting its zero-
field limit from it, and adding the known regularized, zero-field vacuum polarization
tensor to it [4, 5, 17, 18, 28].

In taking the limit B ! 0, it is helpful to incorporate L D B=Bc into new
variables of integration ˛=L, ˇ=L, before taking the limit L ! 0. One finds, as
expected, that ˘1.k/, ˘2.k/ are non-divergent and do not require regularization.
The invariant ˘0.k/ is the coefficient of the part of the tensor / k2g�� � k�k� ,
and it must reduce to the unmagnetized vacuum polarization tensor for B ! 0. It is
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known that regularization in the unmagnetized case (� 8.1.3 of volume 1) requires a
double subtraction; specifically, regarding˘0.k/ as a function of k2, its regularized
part is, cf. (8.1.9) of volume 1,

reg˘0.k
2/ D ˘0.k

2/�˘0.0/� k2Œ@˘0.k
2/=@k2�k2D0:

Regularization of ˘0.k/ gives

reg˘0.k/ D e2k2
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� 1
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�
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˛2


�
: (8.1.22)

The regularized, unmagnetized, vacuum polarization tensor needs to be added
to (8.1.22) to obtain the full expression for reg˘0.k/.

Weak-Field and Strong-Field Limits

In the weak field approximation, the power series expansions of the functions di
in (8.1.21) converge rapidly. On retaining only the leading terms, the integrals to be
evaluated are elementary, and one finds

˘0.k/

k2
D � e2

90
2
B2

B2
c

;
˘1.k/

k2?
D 4e2

45
2
B2

B2
c

;
˘2.k/

!2 � k2z
D 7e2

45
2
B2

B2
c

: (8.1.23)

In the strong field limit B 	 Bc , one finds that ˘0.k/;˘1.k/ are much smaller
than ˘2.k/, which may be approximated by

˘2.k/ D e3B

2
2
e�k2

?
=2eB

(
� 1

C 4m2

q
Œ4m2 � .!2 � k2z /�

1=2.!2 � k2z /
arctan

s
!2 � k2z

4m2 � .!2 � k2z /

)
:

(8.1.24)

The result (8.1.24) simplifies to ˘2.k/ 
 .e2=12
2/.B=Bc/.!
2 � k2z / for 4m2 	

!2 � k2z , k2? � 2eB .



8.1 Linear Response of the Magnetized Vacuum 347

8.1.4 Vacuum Polarization Tensor: Vertex Formalism

An alternative procedure for calculating the vacuum polarization tensor is based
on the amplitude of the bubble diagram derived using the vertex formalism.
This approach is used in � 9.1 to write down the response tensor including the
contributions from both the vacuum and an electron gas. The vacuum polarization
tensor follows from the more general form (9.1.1) for the response tensor by setting
the occupation numbers to zero.

Unregularized Tensor: Vertex Formalism

The expression for unregularized vacuum polarization tensor in the vertex formal-
ism is

˘��.k/ D �e
3B

2


X
�;q;�0 ;q0

Z
dpz

2


1

2
.�0 � �/

�
� �0�
q0q
.k/
���
� �0�
q0q
.k/
���

! � �"q C �0"q0 C i0
; (8.1.25)

where the sets of quantum numbers q and q0 denote pz; n; s and p0
z; n

0; s0, with
�0p0

z D �pz � kz implicit.
The sums over s; s0 and �0; � in (8.1.25) can be performed explicitly. The sum over

s; s0 is performed in � 5.4.4. The sum over the product of vertex function leads to the
tensor

�
Cn0n.�

0p0
k; �pk; k/

���
, defined by (5.4.23), and given explicitly by (5.4.24)

and in Table 5.1. For the vacuum, only �0 D �� contributes, due to the factor
1

2
.�0 �

�/ D �� in (8.1.25).
The unregularized form of the response tensor is ill-defined, and the expressions

obtained for it depend on the method of calculation. The regularized tensor
must be independent of the method of calculation, but different methods can
lead to superficially different forms. To illustrate this point, suppose one starts
from (8.1.25), summed over the spins, and discards the gyrotropic terms and
the terms that are inconsistent with the charge-continuity and gauge-invariance
conditions. This leaves four different unregularized components (e.g., the 11, 22, 33
and 13 components). There are only three invariant components of the regularized
form (8.1.3). One can choose different procedures to calculate the three invariants
from the four components. One procedure is to note that the 22- and 33-components
are proportional to ˘0.k/C˘1.k/ and ˘0.k/C˘2.k/, respectively, and one may
use the trace of the 4-tensor to calculate 3˘0.k/C˘1.k/C˘2.k/. This procedure
involves using the 00- and 03-components, but not the 13-component, and the result
may be written in terms of the 11-, 22-, 33-components, e.g., as given in Table 5.1.
Another procedure is to identify˘13.k/ as �˘0.k/k?kz=k

2. These two procedures
lead to different results. The physical requirement is that the regularized tensor be
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well defined, and hence these two different procedure must lead to the same result
after regularization.

By inspection of the entries in Table 5.1, the nongyrotropic components are sym-
metric under the interchange of the primed and unprimed variables, �0; n0; "0

n0; p
0
z $

�; n; "n; pz. With the gyrotropic components discarded, one may make the depen-
dence on � explicit. A complication is that for � D ��0 D 1 one has p0

z D kz � pz,
and for � D ��0 D �1 one has p0

z D �kz � pz; however, interchanging the primed
and unprimed variables in the latter case, the relation p0

z D kz � pz is restored, so
that one p0

z D kz � pz in both terms. This procedure ignores the 13-component,
allowing the remaining nongyrotropic components in Table 5.1 to be written as a
4-tensor:

�
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0
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���
vac D �.p0�

k p
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k C p
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k p
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k /
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��
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C .e
�
1 e

�
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�
2 e

�
2 /2pn0pnJ

n�1
n0�nC1J

n
n0�n�1; (8.1.26)

with p0�
k D Œ"0

n0 ; 0; 0; p
0
z�, p

�

k D Œ"n; 0; 0; pz�, and with p0
z D kz � pz. The vacuum

contribution to (8.1.25) then becomes

˘��.k/ D �e
3B

8
2

X
�;n0 ;n

Z
dpz

"0
n0"n

�
�
Cn0n.p

0
k; pk; k/

���
vac

! � �."n C "0
n0/C i0

; (8.1.27)

The sum over � can be performed in (8.1.27) after multiplying numerator and
denominator by!C�."nC"0

n0/, but the form (8.1.27) is more useful in the following.
The alternative procedure for identifying ˘0.k/ is to choose the 13-component

of (8.1.3)

˘13.k/ D �k?kz˘0.k/

k2
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3B

8
2

X
�;n0 ;n

Z
dpz

"0
n0"n

�
�
Cn0n.p

0
k; pk; k/

�13
! � �."n C "0

n0/C i0
; (8.1.28)

with
�
Cn0n.p

0
k; pk; k/

�13
given by �0 D �� in the 13-entry in Table 5.1. It should be

emphasized that (8.1.27) and (8.1.28) are meaningless in themselves, and are simply
intermediate steps in the calculation of the unregularized invariant components
˘i.k/. One method of calculation of the invariants involves uses (8.1.27) and (8.1.6)
to calculate all three invariants, and the alternative method uses (8.1.27) and (8.1.6)
to calculate ˘0.k/C˘1.k/ and ˘0.k/C˘2.k/, and (8.1.28) to calculate ˘0.k/.
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Unregularized Invariant Components: Vertex Formalism

One form of the unregularized invariant components ˘i.k/ follows from (8.1.27)
and (8.1.6). Writing

˘i.k/ D �e
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dpz
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n0"n
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�
Cn0n.p

0
k; pk; k/

�
i

! � �."n C "0
n0/C i0

; (8.1.29)

defines the (unregularized) invariants Ci D �
Cn0n.p

0
k; pk; k/

�
i

in the numerator.
One form for the invariants Ci follows by taking the trace of the 4-tensor and

its projections onto k
�
Gk

�
G=k

2
G and k

�
Dk

�
D=k

2
D . This procedure may be applied

to (8.1.26), resulting in 3C0 C C1 C C2, C0 C C1 and C0 C C2 respectively. In
evaluating the projection onto k�Dk

�
D=k

2
D one uses the identity

.kDp
0/.kDp/ D .p0k/k.pk/k � .k2/k.p0p/k: (8.1.30)

The (unregularized) invariant components are
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The alternative method for calculating ˘0.k/ involves using (8.1.28), which
gives

C0 D �k2

k?kz

˚
pn0pz

�
J n�1
n0�nJ

n�1
n0�nC1 C J nn0�nJ

n
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zpn
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J nn0�nJ

n�1
n0�nC1 C J n�1

n0�nJ
n
n0�n�1

��
: (8.1.32)

The expression (8.1.32) is an alternative to the expression for C0 in (8.1.31); the
remaining two invariants are unaffected.
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The final step in the calculation is to regularize the invariants (8.1.27)
with (8.1.31). This may be achieved by identifying the antihermitian part of the
tensor and using a Kramers-Kronig relation to construct the hermitian part of the
regularized tensor from it.

8.1.5 Antihermitian Part of the Vacuum Polarization Tensor

The antihermitian part of the vacuum response tensor describes dissipation in the
vacuum. The only allowed dissipative process is one-photon pair creation. Besides
describing this process, the anithermitian part is also useful in regularizing the
hermitian part, using a method due to Toll [27].

The vacuum response tensor is symmetric, and hence its antihermitian part is its
imaginary part. The imaginary part of the Géhéniau form (8.1.17) is obtained by
replacing the exponential function according to eiy ! i siny. The interpretation
of this imaginary part is not obvious in the Géhéniau form. In contrast, the
interpretation of the antihermitian part of the response tensor (8.1.25) in the vertex
formalism, is straightforward in terms of one-photon pair creation.

Antihermitian Part: Vertex Formalism

The antihermitian part of the vacuum response tensor may be described by the
imaginary parts of its invariant components. The imaginary parts of the compo-
nents (8.1.29) are

Im˘i.k/ D e3B

8


X
�;n0 ;n

Z
dpz

"0
n0"n

�
�
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n0/�: (8.1.33)

The integral over pz may be performed over the ı-function, with � D 1 contributing
for ! > 0 and � D �1 contributing for ! < 0. There are two solutions of the
resonance condition, labeled ˙ and given by (6.1.16)–(6.1.19). This gives

Im˘i.k/ D e3B

8


X
n0;n;˙

�
Cn0n.p

0̇ ; p˙; k/
�
i

.k2/kgnn0

; (8.1.34)

with gnn0 defined by (6.1.17) and with the resonant values of pz; p
0
z and "n; "0

n0

given by (6.1.18) and (6.1.19), respectively. The resonant values of the invariants
in (8.1.31) are the same for the ˙-solutions with

Œ.pk/k�˙ D .pk/nn0 D .k2/kfnn0 D 1

2
Œp2n � p2n0 C k2/k�;

Œ.p0k/k�˙ D .k2/k � Œ.pk/k�˙; Œ.p0p/k�˙ D Œ.pk/k�˙ � ."0n/2: (8.1.35)
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The antihermitian part of the vacuum response tensor may be used to calculate
the absorption coefficient for one-photon pair creation. The absorption coefficient
is equivalent to the rate of pair production, which is calculated in � 6.4.1 from
the probability for pair production, leading to (6.4.3). The absorption coefficient
may calculated from the general expression (3.1.27) for the absorption coefficient
in terms of the antihermitian part of the response tensor. The latter procedure, us-
ing (8.1.34) in (8.1.3), is summed over the spins, and does not includes information
on the spins of the electron and positron that is retained in (6.4.3).

Regularization Using Kramers-Kronig Relation

The complete response tensor may be constructed from its antihermitian part using
the Kramers-Kronig relation

˘��.!;k/ D � i




Z 1

�1
d!0

!0 � ! C i0
˘A��.!0;k/: (8.1.36)

A regularization procedure is to construct the antihermitian part of the unregularized
form of the tensor, and use (8.1.36) to construct the regularized tensor from its
antihermitian part. This method applies in wider contexts, and is referred to as
the dispersion-integral method in � 9.2.1, where it is applied to the response of an
electron gas.

The dispersion-integral method for calculating the vacuum polarization tensor
[10, 18, 27] is equivalent here to inserting (8.1.34) into (8.1.36). The result may
be rewritten as a pz-integral by considering the antihermitian part of (8.1.37) and
reversing the step between (8.1.34) and (8.1.33). This gives
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(8.1.37)

The important change between (8.1.29) and (8.1.37) is that the numerator is
evaluated at the resonant values, so that it no longer depends on pz and is taken
outside the integral. This removes terms in the numerator in (8.1.29) that cause the
integral to diverge at the limits jpzj ! 1, thereby regularizing these integrals.
Thus a regularized form of the vacuum response tensor is given by (8.1.37)
in (8.1.3) with

�
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�
i

identified by replacing .pk/k; .p0k/k; .p0p/k in
the expressions (8.1.31) for Ci by the resonant values (8.1.35). One has
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where the expression for
�
Cn0n.p

0̇ ; p˙; k/
�
0

is simplified using the iden-
tity (A.1.36).

The alternative method of calculation of C0 is based on (8.1.32). The resonant
values are pz D kz � p0

z D !fnn0 ˙ !gnn0 . The ˙ terms cancel due to the
identifies (A.1.35). The remaining terms give
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with fn0n D .1 � fnn0/, fnn0 D Œp2n � p2
n0 C .k2/k�=2.k2/k. Using the identi-

ties (A.1.35), (8.1.39) may be rewritten as
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8.1.6 Vacuum Polarization: Limiting Cases

The vacuum polarization tensor simplifies in the long-wavelength limit and in the
strong-B limit.

Long-Wavelength Limit

The long-wavelength limit corresponds to k? ! 0, kz ! 0. In the limit k? ! 0,
the argument, x D k2?=2eB , of the J -functions tends to zero, and this is referred
to as the small-x approximation in � 9.4.2. The sums over n0; n simplify, with the
only contributions being from n0 D n; n ˙ 1. Useful expressions can be derived in
the low-frequency limits, !2 � 4m2 and B � Bc , when the sum over n may be



8.1 Linear Response of the Magnetized Vacuum 353

performed using the Euler-Maclaurin summation formula. The result gives [18]

Re˘0.k/ D � e2!4

60
2m2
� e2!2

90
2

�
B

Bc


2
C e2!2

105
2

�
B

Bc


4
C � � � ;

Re˘2.k/ D 7e2!2

180
2

�
B

Bc


2
� 13e2!2

630
2

�
B

Bc


4
C � � � ; (8.1.41)

with Re˘1.k/ D 0 in this approximation.

Strong-B Limit

In the strong field limit, B 	 Bc , for k2? � m2, !2 � k2z � m2, the sum over
n0; n is dominated by n D n0 D 0. Retaining only this contribution, one finds that
Re˘0.k/ and Re˘1.k/ are negligible in comparison with Re˘2.k/, which reduces
to [18]

Re˘2.k/

!2 � k2z
D e2

12
2
B

Bc
: (8.1.42)

The result (8.1.42) reproduces the !2 � k2z � 4m2 limit of (8.1.24).

8.1.7 Wave Modes of the Magnetized Vacuum

The properties of waves in the magnetized vacuum may be found by identifying the
relevant wave equation and solving it. The photon propagator is identified as the
Green function for this wave equation, and the wave modes may be identified from
the poles of the photons propagator. The latter procedure is adopted here.

Photon Propagator in the Magnetized Vacuum

In the homogeneous wave equation,���.k/A�.k/ D 0, one has

���.k/A�.k/ D 0;

���.k/ D Œ1C �0�.k
2g�� � k�k�/� �1k

�
Gk

�
G � �2k�Dk�D; (8.1.43)

where the dependence of the �i on k is implicit.The wave properties are determined
by the solutions of (8.1.43). A direct covariant method involves constructing the
invariants t .1/, t .2/, t .3/ that appear in the invariant dispersion equation (3.1.4).

A simpler approach in this case is to construct the photon propagator, and to
identify the wave modes from its poles [24, 25]. The photon propagator is defined
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as a solution of

��
�.k/D

��.k/ D �0.g
�� � k�k�=k2/: (8.1.44)

One may constructD��.k/ by assuming it has components along the tensors (8.1.2),
inserting this form in (8.1.44), and solving for the coefficients. This gives

D�� D �0

Œ1C �0�k2



g�� � k�k�

k2
C �1k

�
Gk

�
G

Œ1C �0�k2 C �1k
2?

C �2k
�
Dk

�
D

Œ1C �0�k2 C �2.k2/k

�
; (8.1.45)

where the argument k is omitted.

Wave Modes in Invariant Form

The poles in the photon propagator determine the dispersion relations for the modes,
and the polarization vector for a particular mode is determined by the tensor in
the corresponding numerator. The photon propagator is gauge dependent, and the
form (8.1.45) corresponds to the Lorenz gauge, implying that polarization vectors
identified from (8.1.45) are in the Lorenz gauge.

The invariant dispersion relations for the ?-mode and the k-mode are

.1C �0/k
2 C �2k

2? D 0; e
�

? / k
�
G;

.1C �0/k
2 C �2.k

2/k D 0; e
�

k / k
�
D; (8.1.46)

respectively. The polarization 4-vectors in the Lorenz gauge need to be transformed
to the temporal gauge and normalized to find the corresponding polarization 3-
vectors. For the ?-mode the polarization 3-vector, e? D a, is perpendicular to both
k and B; it has no longitudinal component. For the k-mode the polarization 4-vector
/ k

�
D in the Lorenz gauge implies e / .k?kz; 0;�!2 C k2z / in the temporal gauge.

This polarization vector has both longitudinal and transverse components, and
writing it in the form e D .LκCT t/=.1CL2CT 2/1=2, the ratio of the longitudinal
and transverse parts is L=T D .1 � n2/ cot � , where k2 D !2.1 � n2/ defines
the refractive index, n. When the dispersion is weak, n2 
 1, the longitudinal
component is small, and the polarization vector is nearly transverse, with ek 
 t.

3-Tensor Form for the Vacuum Response

There are two different 3-tensor descriptions of the response of the magnetized
vacuum. The more traditional description is in terms of separate electric and
magnetic responses, involving an electric susceptibility tensor and a magnetic sus-
ceptibility tensor. When an electrostatic field is included, one also needs additional
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magneto-electric susceptibility tensors. This form of the response is based on a
multipole expansion, with the electric response described by electric moments per
unit volume and the magnetic response by magnetic moments per unit volume.
This formalism, which is discussed briefly following (8.3.21) below, is not used
here. The other 3-tensor form is in terms of an equivalent susceptibility tensor or
equivalent dielectric tensor, as used in conventional plasma dispersion theory. After
Fourier transforming, one cannot distinguish electric and magnetic effects uniquely,
and both are combined in a single k-dependent response 3-tensor. The equivalent
dielectric tensor K.!;k/ D 1 C χ.!;k/, differs from the equivalent susceptibility
tensor, χ.!;k/, by the unit tensor, and χ.!;k/ is equal to ….!;k/="0!2, where
the ij component of ….!;k/ is identified as �˘ij .k/.

The equivalent susceptibility tensor for the magnetized vacuum is

χ.!;k/ D
0
@
�0.1 � n2z / 0 ��0n?nz

0 �0.1 � n2/C �1n
2? 0

��0n?nz 0 �0.1 � n2?/C �2

1
A ; (8.1.47)

with n? D k?=! D n sin � , nz D kz=! D n cos � , and where the dependence of
�i on k� D .!;k/ is implicit. The wave equation in 3-tensor form can be written as
the matrix equation

0
@
.1 � n2z /.1C �0/ 0 �.1C �0/n?nz

0 .1 � n2/.1C �0/C �1n
2? 0

�.1C �0/n?nz 0 .1 � n2?/.1C �0/C �2

1
A
0
@
ex
ey
ez

1
AD0:

(8.1.48)

The solutions of (8.1.48) reproduce the two modes (8.1.46). These solutions are
written down explicitly and discussed in � 8.4, cf. (8.4.9) and (8.4.10).

8.2 Schwinger’s Proper-Time Method

Schwinger [23] developed what is known as the proper-time method for treating
QED processes in a static electromagnetic field. Two related applications the
proper-time method are discussed in this section: Schwinger’s generalization of the
Heisenberg-Euler Lagrangian [12], and spontaneous pair creation in an electromag-
netic wrench.

8.2.1 Proper-Time Method

In the proper-time method the propagator, G.x; x0/, is regarded as the matrix
element, hx0j OG jxi, of an operator, OG, between space-time states, jxi, and jx0i. The
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essence of the proper-time method is to identify an equivalent dynamical system
that determines how the position and momentum operators, x and ˘ , respectively,
evolve as a function of a variable, s, identified as the proper time.

Proper-Time Method: Propagator

The electron propagator may be defined as a solution of the inhomogeneous Dirac
equation. It satisfies the differential equation

.i=@� e=A.x/Cm/G.x; x0/ D ı4.x � x0/: (8.2.1)

Writing G.x; x0/ D hx0j OG jxi, and noting hx0j jxi D ı4.x � x0/, the operator OG
satisfies

.=̆ �m/G D 1; ˘ D p C eA; (8.2.2)

where the hats on operators are omitted for simplicity. The solution of (8.2.2) is
written

OG D =̆ Cm

=̆ 2 �m2
D i.=̆ Cm/

Z 1

0

ds exp
�
i.=̆ 2 �m2/s�: (8.2.3)

The parameter s is (8.2.3) is interpreted as a proper time.

Proper-Time Method: Hamilton’s Equations

In the proper-time method, the state jxi is regarded as an eigenfunction of the
space-time operator, Ox. An equivalent dynamical system is introduced to determine
how the eigenstates jx.0/00i and hx.s/0j of the operator x.s/ evolve with s. Let
the Hamiltonian of this equivalent dynamical system be H, which is a function
of the coordinate operator, x, and the momentum operator, ˘ , as well as of the
parameter s. Assuming that s plays the role of a time, the evolution of the states in
the Schrödinger picture leads to the requirement

hx0j expŒ�iHs� jx00i D hx.s/0jx.0/00i: (8.2.4)

In effect, the operator expŒ�iHs� corresponds to the S -matrix for the system, with
t ! s, t0 ! 0, HI ! H. The notation in (8.2.4) reflects the fact that x.s/ is to be
identified as x00 for s D 0 and as x0 for arbitrary s.

The Hamiltonian may be written down by inspection of (8.2.3):

H D =̆ 2 D ˘2 C eS��F��; ˘� D i Œ@� � ieA�.x/�: (8.2.5)

For a uniform static electromagnetic field, F�� , Hamilton’s equations for the
operators x and˘ give
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dx�

ds
D �i Œx�;H� D 2˘�;

d˘�

ds
D �i Œ˘�;H� D 2eF��˘�; (8.2.6)

respectively. Schwinger wrote these equations in the symbolic form dx=ds D 2˘ ,
d˘=ds D 2eF˘ , and wrote down the solutions:

˘.s/ D e2eF s ˘.0/; x.s/ � x.0/ D e2eF s � 1
eF

˘.0/: (8.2.7)

The commutation relations Œx�.0/;˘�.0/� D �ig�� are written symbolically as
Œx.0/;˘.0/� D �i . The commutation relation of the second of (8.2.7) with x.0/
implies

Œx.s/; x.0/� D i
e2eF s � 1

eF
: (8.2.8)

The essential step in linking the proper-time method to the propagator is to note
that the factor involving =̆ 2 ! H in the integrand in (8.2.3) may be written as a
matrix element of the position operator at different proper times:

G.x0; x00/ D i.=̆ Cm/

Z 1

0

ds e�im2s hx.s/0jx.0/00i

D i

Z 1

0

ds e�im2s Œhx.s/0j=̆ .s/jx.0/00i Cmhx.s/0jx.0/00i�: (8.2.9)

The evaluation of the propagator is thereby reduced to the evaluation of the matrix
element in the integrand of (8.2.9). This is determined by

d hx.s/0jx.0/00i
ds

D hx.s/0jHjx.0/00i;
hx.s/0j˘�.s/jx.0/00i D Œi@00

� � eA�.x0/�hx.s/0jx.0/00i: (8.2.10)

The relevant solutions are

hx.s/0jx.0/00i D �i 	.x
0; x00/

16
2s2
e�L.s/ e 14 i.x0�x00/eF Œcoth.eF s/�.x0�x00/ e�ieSF ;

hx.s/0j˘.s/jx.0/00i D 1

2
ŒeF coth.eF s/� eF � .x0 � x00/ hx.s/0jx.0/00i;

L.s/ D 1

2
tr ln

�
sinh eF s

eF s

�
; (8.2.11)

with 	.x0; x00/ given by (5.3.4), SF D S��F�� , and where tr denotes the trace over
the 4-tensor indices, with trF D 0 due to F�� being antisymmetric.
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8.2.2 Propagator in an Electromagnetic Field

The form (8.2.9) with (8.2.11) for the propagator depends on the electromagnetic
field, F , in a manner that can be made explicit by expressing the result in terms of
the invariants S , P , defined by (1.1.5).

Propagator in a Magnetostatic Field

The case of a magnetostatic field corresponds to E D 0, implying S D �B2=2,
P D 0. To show that Schwinger’s method reproduces the result (5.3.12), it is
convenient to start from the first form of (8.2.9).

In a magnetostatic field the Maxwell tensor is of the form

F �� D Bf ��; g
��

? D �f �
˛f

˛�; g
��

k D g�� � g��? : (8.2.12)

The quantity L.s/ in (8.2.11) is determined by the eigenvalues of F�� : two of the
four eigenvalues are zero and the other two are ˙iB . After summing over the contri-
butions from each of these eigenvalues, one has e�L.s/ D eBs= sin.eBs/. The next
factor in (8.2.11) involves a 4-tensor eF s coth.eF s/, which is defined formally in
terms of the expansion in a power series in the 4-tensor eF s. In the case of a magne-
tostatic field, the Maxwell tensor and its powers are confined to the two-dimensional
x-y space, whose metric tensor is g��? . The invariant xeF s Œcoth.eF s/�x separates
into a trivial part, x2k , and a part .xeF s Œcoth.eF s/�x/? that is evaluated by summing
over the eigenvalues F ! ˙iB . Thus one finds

xeF s Œcoth.eF s/�x D x2k C x2? eBs cot.eBs/: (8.2.13)

One uses (8.2.13) in (8.2.11) with x ! x0�x00 and .x0�x00/2k D .t 0�t 00/2�.z0�z00/2,
.x0 �x00/2? D �.x0 �x00/2� .y0 �y00/2. The final factor in (8.2.11) is exp.�ieSF /,
with S��F�� D �˙ � B, that is S��F�� D �˙zB for B along the z axis. Hence
one has

expŒ�ieSF s� D expŒie˙zBs� D cos.eBs/C i˙z sin.eBs/: (8.2.14)

Combining these factors, (8.2.11) reproduces the propagator (5.3.12) with 1=2�
interpreted as Schwinger’s proper time, s.

Propagator for an Electromagnetic Wrench

The generalization to an arbitrary static electromagnetic field, that is, to an
electromagnetic wrench, involves assuming the invariantP to be nonzero. In general
the eigenvalues, F 0, of the electromagnetic field, F�

� , satisfy
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det ŒF �
� � F 0ı�� � D F 04 � 2SF 02 � P2 D 0: (8.2.15)

The four eigenvalues are F 0 D ˙f˙, with f 2˙ D S ˙ .S2 C P2/1=2 and hence

f˙ D 1

21=2

�
.S C iP /1=2 ˙ .S � iP /1=2�: (8.2.16)

In the general case of an electromagnetic wrench, one has

e�L.s/ D .es/2P

Imfcosh.esX/g ;

xeF Œcoth.eF s/�x D x2keE coth.eEs/C x2?eB cot.eBs/;

trfexpŒ�ieSF s�g D 4Refcosh.esX/g; (8.2.17)

where tr denotes the trace over the 4-tensor indices, and where one has

X2 D .B C iE/2 D �2S C 2iP; (8.2.18)

with S;P defined by (1.1.5). The final result for the propagator is

G.x0 � x00/ D 	.x0; x00/�.x0 � x00/;

�.x/ D �e2EB
16
2

Z 1

0

ds
e�im2s

sinh.eEs/ sin.2Bs/

�
�
eE.�x/k e�i�eBs

2 sinh.eEs/
C eB.�x/? e�˛eEs

2 sin.eBs/
Cme�˛eEs e�i�eBs

�

� exp

"
� ieEx2k
4 tanh.eEs/

� ieBx2?
4 tan.eBs/

#
: (8.2.19)

The gauge dependent factor, 	.x0; x00/, is defined by (5.3.4), and for the choice

A�.x/ D .0; 0; Bx;Et/; (8.2.20)

it has the explicit form

	.x0; x00/ D eieŒE.t
0Ct 00/.z0�z00/�B.x0Cx00/.y0�y00/�=2: (8.2.21)
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8.2.3 Weisskopf’s Lagrangian

Before using the proper-time method to generalize the Heisenberg-Euler La-
grangian, it is appropriate to consider the original derivation in the 1930s, by
Weisskopf [34] using Dirac’s hole theory. In Dirac’s hole theory the vacuum consists
of empty positive-energy states and filled negative-energy states, with a positron
identified as a hole in the negative-energy sea.

Effect of a Magnetic Field on the Dirac Sea

The presence of a static electromagnetic field, F ��
0 , modifies the energy of the

virtual particles in the Dirac sea. It follows that the vacuum energy density for
F
��
0 ¤ 0 is different from that for F��

0 D 0. Suppose that the additional vacuum
energy is UV .F0/, with UV .0/ D 0 for F0 D 0. The change in the Lagrangian
density is numerically equal to minus this energy density. The nonlinear corrections
to the Lagrangian are included in

LI D �UV .F0/; (8.2.22)

and these nonlinear terms give the Heisenberg-Euler Lagrangian.
The vacuum energy consists of the contributions from all the filled negative

energy states. The energy eigenvalues are ˙.m2 C p2z C 2neB/1=2, with the state
n D 0 being nondegenerate and the states n � 1 being doubly degenerate. The
vacuum energy for the filled negative energy states is identified as

UV D �eB
2


Z
dpz

2


1X
nD0

an.m
2 C p2z C 2neB/1=2 (8.2.23)

where the degeneracy factor is a0 D 1, an D 2 for n � 1.

Euler-Maclaurin Summation Formula

The sum over n in (8.2.23) is performed using the Euler-Maclaurin summation
formula

1X
nD0

F.nb/ D 1

2
ŒF.0/C F.1/�C 1

b

Z 1

0

dx F.x/

C
1X
kD1

B2kb
2k�1

.2k/Š

�
F .2k�1/.1/� F .2k�1/.0/

�
; (8.2.24)



8.2 Schwinger’s Proper-Time Method 361

where the Bn are the Bernoulli numbers, with B2 D 1=6, B4 D �1=30, and with
F .n/.x/ denoting the nth derivative of F.x/. In this way one finds

UV D � 1

2


Z
dpz

2


� Z 1

0

dx .m2 C p2z C x/1=2

�
1X
kD1

B2k.2eB/
2k

.2k/Š

d .2k�1/.m2 C p2z C x/1=2

dx2k�1

ˇ̌
ˇ̌
x!0

�
: (8.2.25)

Regularization

The vacuum energy is divergent and needs to be regularized. Regularization
of (8.2.25) requires that the divergent term independent ofB be omitted, and that the
term proportional to B2 be replaced by the known correct value for the Lagrangian
of the Maxwell field. The nonlinear terms that remain are

regUV D 1

2


Z
dpz

2


1X
kD2

B2kb
2k�1

.2k/Š

d .2k�1/.m2 C p2z C x/1=2

dx2k�1

ˇ̌
ˇ̌
x!0

: (8.2.26)

The integral over pz gives

Z
dpz

2


d2k�1.m2 C p2z C x/1=2

dx2k�1

ˇ̌
ˇ̌
x!0

D � .2k � 2/
4
m4.k�1/ : (8.2.27)

The integral representation of the � -function,

� .n/ D
Z 1

0

d� �n�1 e��; (8.2.28)

allows one to rewrite (8.2.26) with (8.2.27) in the form

regUV D m4

8
2

Z
d�
e��

�3

1X
kD2

22kB2k

.2k/Š

�
�eB

m2


2k
: (8.2.29)

It is convenient to replace the variable of integration according to � ! m2�. After
evaluating the sum in (8.2.29) explicitly, one obtains

LI D � 1

8
2

Z
d�

�3
e�m2�

�
�eB coth.�eB/ � 1 � 1

3
�2e2B2

�
: (8.2.30)

The result (8.2.30) is for a magnetostatic field.
Weisskopf [34] also evaluated the Lagrangian including an electrostatic field by

assuming the electric field to be spatially periodic and allowing the wavelength to
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go to infinity. In the limit where the spatial period of the field is arbitrarily long, the
result corresponds to (8.2.30) with B ! iE.

8.2.4 Generalization of Heisenberg-Euler Lagrangian

Schwinger [23] used the proper-time method to rederive and generalize the
Heisenberg-Euler Lagrangian.

Lagrangian Density

The Heisenberg-Euler Lagrangian is calculated by considering the energy density in
the vacuum using the proper-time method. This energy associated with a variation,
ıA, in the electromagnetic field is

ıW .1/ D
Z
d4x ıA�.x/ hJ�.x/i D ı

Z
d4x LI .x/; (8.2.31)

where LI .x/ is the nonlinear correction to the Lagrangian and hJ�.x/i is the
vacuum expectation value of the current density.

The calculation of hJ�.x/i using the proper-time method involves first writing it
in the form

hJ�.x/i D ie trf�� hxjGjxig; (8.2.32)

whereG is the operator introduced in (8.2.2). An operator ıA is also introduced such
that its diagonal matrix elements give the variation in the electromagnetic field:

hxjıA�jx0i D ı4.x � x0/ ıA�.x/: (8.2.33)

Then using (8.2.3) and the identity

� eıA D ı.=̆ Cm/; (8.2.34)

the variation (8.2.31) is written in the form

ıW .1/ D ieTrf� ıAGg D ı

�
i

2

Z 1

0

ds

s
e�im2s ei =̆ 2s

�
; (8.2.35)

where Tr denotes summation over the diagonal terms with respect to both the Dirac
spinor indices and the space-time coordinates. To within an additive constant, the
Lagrangian density is identified as

L.1/.x/ D i

2

Z 1

0

ds

s
e�im2s hxjei =̆ 2sjxi: (8.2.36)
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The proper-time method gives hxj exp.i=̆ 2s/jxi D hx.s/jx.0/i, and an explicit
expression for L.1/.x/ follows from (8.2.11):

L.1/.x/ D 1

32
2

Z 1

0

ds

s3
e�im2s e�L.s/ trfeieSF sg: (8.2.37)

The total Lagrangian is obtained by subtracting the divergent term for F D 0,
and also the terms of first order in F 2, and adding the Lagrangian, S=�0, for the
Maxwell field. The final result for the Lagrangian is

L.x/ D S

�0
� 1

8
2

Z 1

0

ds

s3
e�im2s

�
.es/2 P

Re cosh.esX/

Im cosh.esX/
� 1C 2.es/2S

3

�
;

(8.2.38)

with X2 D .B C iE/2, as in (8.2.17). The result (8.2.38) is Schwinger’s
generalization of the Heisenberg-Euler Lagrangian.

Expansion for Weak Fields

The lowest order terms in the expansion of (8.2.38) in powers of the fields are

L D S

�0
C e4

360
2m4
.4S2 C 7P 2/C e6

630
2m8
.8S3 C 13SP 2/

C e8

945
2m12
.48S4 C 88S2P 2 C 19P 4/C � � � : (8.2.39)

The nonlinear terms may be rewritten in terms of the fine structure constant,
˛c D e2=4
"0m D �0e

2=4
m, and the critical magnetic field, Bc D m2=e. For a
magnetostatic field, the nonlinear terms are proportional to ˛c=�0 times .B=Bc/4,
.B=Bc/

6, .B=Bc/8, and so on.

8.3 Vacuum in an Electromagnetic Wrench

Inclusion of an electrostatic field, as well as a magnetostatic field, leads to an
electromagnetic field referred to as an electromagnetic wrench. In this section, the
vacuum polarization tensor for an electromagnetic wrench is evaluated using the
proper-time method. At low frequencies, ! � m, this reduces to the result derived
using the Heisenberg-Euler Lagrangian. The vacuum in an electromagnetic wrench
is unstable to spontaneous pair creation, described by an antihermitian part of the
response tensor. The nonlinear response tensors for an electromagnetic wrench are
also discussed in this section.
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8.3.1 Response Tensor for an Electromagnetic Wrench

A derivation of the vacuum response tensor for an electromagnetic wrench is
analogous to the derivation in � 8.1 for a magnetostatic field with the propagator
given by the proper-time method, (8.2.19) with S ¤ 0, P ¤ 0, in place of the
Géhéniau form (5.3.13), which corresponds to S < 0, P D 0. It is possible to
choose a set of basis 4-vectors that generalize the set (8.1.1).

The Maxwell 4-tensor and its dual for an electromagnetic wrench may be written

F �� D Bf �� CE	�� F�� D �Ef �� C B	�� (8.3.1)

respectively, where f �� , 	�� are as defined for E D 0 by (1.1.6) and (1.1.7)
respectively. The resulting (unnormalized) basis 4-vectors, Qb�i say, are

Qb�1 D k˛F
˛� D Bb

�
1 C Eb

�
2 ;

Qb�2 D k˛F˛� D �Eb�1 C Bb
�
2 ; (8.3.2)

Unlike the magnetostatic case, the response tensor for an electromagnetic wrench is
not diagonal for any choice of real basis 4-vectors. The nonzero off-diagonal terms
are along Qf ��

3 , with

Qf ��
1 D

Qb�1 Qb�1
Qb21

; Qf ��
2 D

Qb�2 Qb�2
Qb22

; Qf ��
3 D

Qb�1 Qb�2 C Qb�2 Qb�1
2 Qb1 Qb2

: (8.3.3)

The response tensor is of the form, cf. (8.1.3),

˘��.k/ D
3X
iD0

Q̆
i .k/ Qf ��

i ; (8.3.4)

with Qf ��
0 D f

��
0 defined by (8.1.3). One finds

Q̆
0.k/ D ˚0k

2;

Q̆
1.k/ D B2k2? C E2.!2 � k2z /

.B2 C E2/2
.B2˚1 CE2˚2 C 2EB˚3/;

Q̆
2.k/ D B2.!2 � k2z /C E2k2?

.B2 C E2/2
.E2˚1 C B2˚2 � 2EB˚3/;

Q̆
3.k/ D 2EBŒ.B2 � E2/˚3 � EB.˚1 � ˚2/�

.B2 C E2/2
k2; (8.3.5)
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with the quantities ˚i defined in terms of an integral over functions 	i :

˚i D e4EB

.2
/2

Z 1

0

d˛

Z ˛

0

dˇ
	ie

�im2˛

sin.eB˛/ sinh.eE˛/

exp



i

�
cos.eB˛/� cos.eBˇ/

2eB sin.eB˛/
k2?Ccosh.eE˛/� cosh.eEˇ/

2eE sinh.eE˛/
.!2 � k2z /

��
;

(8.3.6)

	0 D cos.eBˇ/ cosh.eEˇ/

2

�
1 � tan.eBˇ/ tanh.eEˇ/

tan.eB˛/ tanh.eE˛/

�
;

	1 D cosh.eE˛/
cos.eB˛/ � cos.eBˇ/

sin2.eB˛/
C 	0;

	2 D cos.eB˛/
cosh.eE˛/ � cosh.eEˇ/

sinh2.eE˛/
� 	0;

	3 D �1
2



Œ1 � cos.eB˛/ cos.eBˇ/�Œ1 � cosh.eE˛/ cosh.eEˇ/�

sin.eB˛/ sinh.eE˛/

C sin.eBˇ/ sinh.eEˇ/

�
: (8.3.7)

The results (8.3.1)–(8.3.7) apply to an arbitrary electromagnetic wrench, and include
the special cases of a magnetostatic field (B ¤ 0, E D 0) and an electrostatic field
(B D 0, E ¤ 0).

8.3.2 Response Tensors for ! � m

In the low-frequency limit, the linear an nonlinear response of the vacuum with an
electromagnetic wrench can be derived from the Heisenberg-Euler Lagrangian. One
writes F�� D F

��
0 C F

��
1 , where F��

0 corresponds to an electromagnetic wrench,
and F ��

1 describes a test field to which the vacuum responds.

Interaction Energy

The existence of linear and nonlinear responses implies a nonzero interaction energyR
d4x J.x/ıA.x/, where J.x/ is the 4-current induced by a perturbation, ıA.x/, in

the electromagnetic field.
After Fourier transforming, the weak-turbulence expansion of the current allows

the linear and nonlinear response tensors to be identified:
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J�.k/ D ˘��.k/A�.k/

C
1X
nD2

Z
d�.n/ ˘.n/��1:::�n.�k; k1; : : : ; kn/A�1.k1/ : : : A�n.kn/;

(8.3.8)

where the convolution integral is defined by (1.1.32). One then has

Z
d4x J.x/ıA.x/ D ı

�
1

2

Z
d4k

.2
/4
J �.k/A�.�k/A�.k/

C
1X
nD2

1

nC 1

Z
d�.n/ ˘.n/�0�1:::�n .k0; k1; : : : ; kn/

�A�0.k0/A�1.k1/ : : : A�n.kn/
�
; (8.3.9)

where the factor 1=.nC 1/ arises from the dependence of the nth term on the right
hand side on the .n C 1/th power of the wave amplitude, and the symmetry of the
response tensors under arbitrary permutations of the suffices 0; : : : ; n.

The interaction energy is also related to the Lagrangian of the field,

Z
d4x J �.x/ıA�.x/ D ı

Z
d4x L.x/; (8.3.10)

with L.x/ ! LI identified as the Heisenberg-Euler Lagrangian (8.2.38). This leads
to the identifications

�0˘
��.k/ D k˛kˇ

@2LI
@F˛�@Fˇ�

; (8.3.11)

for the linear response tensor, and

˘�0�1:::�n .k0; k1; : : : ; kn/ D .�i/nC1

nŠ
k
˛0
0 k

˛1
1 : : : k

˛n
n

@nC1LI
@F ˛0�0F

˛1�1 : : : F
˛n�n

;

(8.3.12)

for the nonlinear response tensors. The linear and nonlinear response tensors derived
in this way apply only at low frequencies and long wavelengths, which corresponds
to j!i j � m, jki j � m for all i D 0; : : : n.

Derivatives of the Heisenberg-Euler Lagrangian

The differentiation involved in (8.3.11) and (8.3.12) may be carried out by first
noting that the Heisenberg-Euler Lagrangian depends on F�� only through the
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invariants

S D �1
4
F �� F�� D 1

2
.E 2 � B2/; P D �1

4
F �� F�� D E � B: (8.3.13)

The derivatives are

@S

@F��
D �F��;

@P

@F��
D F��: (8.3.14)

One has
@F ˛ˇ

@F��
D g�˛g�ˇ � g�ˇg�˛;

@F˛ˇ

@F��
D ���˛ˇ; (8.3.15)

where the definition F�� D 1
2
���˛ˇF˛ˇ , of the dual is used, with the permutation

symbol ���˛ˇ completely antisymmetric with �0123 D 1.

Susceptibility 4-Tensor for the Vacuum

There are two different descriptions of the linear response of the vacuum, and the
one used here is in terms of the linear response tensor,˘��.k/. The alternative (and
older) description is in terms of electric and magnetic susceptibility 3-tensors; a
magneto-electric susceptibility 3-tensor is also required in general. These 3-tensors
may be combined into a single fourth rank susceptibility 4-tensor. The derivation
from the Heisenberg-Euler Lagrangian leads to this tensor directly.

The Maxwell tensor, F �� , is assumed to consist of two parts:

F�� D F
��
0 C ıF ��; (8.3.16)

where F ��
0 is the static field and

ıF ��.x/ D �i
Z

d4k

.2
/4
eikx

�
k�A�.k/ � k�A�.k/

�
; (8.3.17)

describes a test field. One then expands in powers of ıF ��.x/. The term linear in
ıF ��.x/ allows one to identify the fourth-rank susceptibility 4-tensor,

M�� D ����� ıF
�� ; ����� D 1

2

@2LI
@F��@F��

: (8.3.18)

The linear response tensor is related to the susceptibility 4-tensor through (8.3.11):

�0˘
��.k/ D 2 k˛kˇ�

˛�ˇ�.k/ D k˛kˇ
@2LI

@F˛�@Fˇ�
: (8.3.19)
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Expansion of the Linear Response Tensor

The general expression for the linear response tensor may be expanded in powers of
the background electromagnetic field, F�� , where the subscript 0 is now redundant.
This gives

�0˘
��.k/ D e2

45
B2
c

�
4S.k2g�� � k�k�/C 4k˛F

˛�kˇF
ˇ� C 7k˛F˛�kˇFˇ�

�

C 2˛c

315
B4
c

�
.24S2 C 13P 2/.k2g�� � k�k�/C 48S k˛F

˛�kˇF
ˇ�;

C 26S k˛F˛�kˇFˇ� � 26P
�
k˛F

˛�kˇFˇ� C k˛F˛�kˇF
ˇ�
��
: (8.3.20)

In a frame in which the electric and magnetic fields are parallel and along the
3-axis and k is in the 1–3 plane, the leading terms in the response tensor (8.3.20)
have the form

�0˘
�� D e2

45
B2
c

2
6642.B2 �E2/

0
BB@

�k2? � k2z �!k? 0 �!kz

�!k? �!2 C k2z 0 �k?kz

0 0 �k2 0

�!kz �k?kz 0 �!2 C k2?

1
CCA

C 4

0
BB@

k2zE
2 0 k?kzEB �!kzE

2

0 0 0 0

k?kzEB 0 k2?B2 �!k?EB
�!kzE

2 0 �!k?EB !2E2

1
CCA

C 7

0
BB@

k2zB
2 0 �k?kzEB �!kzB

2

0 0 0 0

�k?kzEB 0 k2?E2 !k?EB
�!kzB

2 0 !k?EB !2B2

1
CCA

3
775 : (8.3.21)

The terms in the 3-tensor components of (8.3.21) include not only an electric
response and magnetic response, but also a magneto-electric response, which is
the component along f ��

3 , cf. (8.3.3). With the response written in terms of the
polarization, P , and the magnetization, M , one has

P="0 D χ.e/ � E C χ.em/ � B;

�0M D χ.m/ � B C χ.me/ � E ; (8.3.22)

where the χ are the susceptibility 3-tensors. The terms proportional to !2 are
included in χ.e/, the terms independent of !2 are included in χ.m/ and the terms
proportional to ! are included in χ.em/ and χ.me/. The magneto-electric response
of the vacuum is nonzero in an electromagnetic wrench, when there is a nonzero
component of E along B.
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In the absence of an electrostatic field (E D 0), (8.3.20) describes the response
of a magnetized vacuum. In this case, comparison with (8.1.1) leads to the
identifications

k˛F
˛�
0 kˇF

ˇ�
0 D �k2?B2 f

��
1 ; k˛F˛�

0 kˇFˇ�
0 D �.!2 � k2z /B2 f

��
2 : (8.3.23)

Then (8.3.20) is of the form (8.1.3), leading to the identifications

�0˘0.k/

k2
D � 2˛cB

2

45
B2
c

;
�0˘1.k/

k2?
D 4˛cB

2

45
B2
c

;
�0˘2.k/

!2 � k2z
D 7˛cB

2

45
B2
c

;

(8.3.24)

which is equivalent to (8.1.23).

8.3.3 Nonlinear Response Tensors for ! � m

The derivation from the Heisenberg-Euler Lagrangian provides expressions for the
quadratic and cubic response tensor purpose that are valid at low frequencies,
! � m.

Quadratic Nonlinear Response Tensor

The term n D 2 in (8.3.12) gives

˘���.k0; k1; k2/ D i

2
k˛0 k

ˇ
1 k

�
2

@3LI
@F ˛

�@F ˇ
�@F �

�

: (8.3.25)

Inserting the explicit form for the Heisenberg-Euler Lagrangian and carrying out the
indicated operations gives

�0˘
���.k0; k1; k2/ D i˛c

90
B2
c

�
4
�
k0k1 g

�� � k�1 k�0 /
�
k2�F

��

C7k0˛k1ˇ��˛�ˇk2�F�� C perm.
�

C i˛c

315
B4
c

� � �
16k0˛F

˛�k1ˇF
ˇ� C 26k0˛F˛�k1ˇFˇ�

�
k2�F

��

� �
k0k1 g

�� � k
�
1 k

�
0 /
��
48S k2�F

�� � 26P k2�F��
�

C 26k0˛k1ˇ�
�˛�ˇ

�
S k2�F�� C P k2�F

��
�C perm.

�
; (8.3.26)
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a b

Fig. 8.1 (a) The box diagram, and (b) the hexagon diagram, whose Feynman amplitudes are used
to calculate the transition rate for photon scattering to first and third order inB , respectively. Three
of the vertices are associated with the three photons, and the other one and three, respectively
with B

where “Cperm.” indicates two additional sets of terms obtained from those written,
one by making the interchanges k0; � $ k2; � and the other by making the
interchanges k1; � $ k2; �.

The two terms in (8.3.26) are proportional to the first power, F , and the third
power, F 3, of the external field. These arise from the Feynman amplitudes for
the box and hexagon diagrams, respectively, as illustrated in Fig. 8.1. For the box
diagram one of the external lines is associated with the static electromagnetic field,
and the other three vertices with the three waves involved; for the hexagon diagram,
three of the vertices are associated with the static electromagnetic field, leading to
the dependencies as F and F 3, respectively.

Cubic Response Tensor

The same procedure applied to the cubic response leads to a leading term that is
independent of the external field:

�0˘
���� .k0; k1; k2; k2/ D ˛c

270
B2
c

�
4
�
k0k1 g

�� � k
�
1 k

�
0

��
k2k3 g

�� � k�3k�2
�

C 7k0˛k1ˇ�
�˛�ˇk2˛k3ˇ�

�˛�ˇ C perm.
�
; (8.3.27)

where “Cperm.” corresponds to two other pairs of terms obtained from the pair
written by the interchanges k1; � $ k2; � and k1; � $ k3; � .

8.3.4 Spontaneous Pair Creation

An electrostatic field and an electromagnetic wrench are intrinsically unstable to
decay into pairs. A simple physical model is for a static electric field, E , along
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the x axis, with potential ˚ D �Ex. Consider a virtual pair at x D 0. Quantum
mechanical tunneling implies a nonzero probability of the electron and positron
appearing as real particles after tunneling a distance such the e˚ exceeds the rest
energym, that is, with a separation >2m=eE .

The probability of spontaneous pair creation is identified by noting that prob-
ability amplitude for a system whose action integral is A is exp.iA/ (exp.iA=„/
in ordinary units), so that the probability of the system remaining in its initial state
decays as j exp.iA/j2 D exp.�2ImfAg/. Assuming the probability of decay is small,
it is 2ImfAg � 1. With A D R

d4x L.x/, the probability of spontaneous pair
creation per unit time and per unit volume is identified as

wSPC D 2ImfL.x/g; (8.3.28)

where SPC denotes spontaneous pair creation, with L.x/ identified as the
Heisenberg-Euler Lagrangian.

The imaginary part of the Heisenberg-Euler Lagrangian, in the form (8.2.38),
arises from the term in the integrand involving the function cosh.esX/. On writing
X D a C ib, one has

.es/2 P
Refcosh.esX/g
Imfcosh.esX/g D .eas/.ebs/

cosh.eas/ cos.ebs/

sinh.eas/ sin.ebs/
: (8.3.29)

The singularities of the function (8.3.29) occur where .ebs/ cot.ebs/ D 1, the
solutions of which are s D sn, with

sn D 
n

eb
; n D 1; 2; : : : : (8.3.30)

The imaginary parts are determined by applying the Landau prescription to each of
these singularities. This gives

wSPC D e2

4
2
ab

1X
nD1

1

n
exp

�
�n
 m

2

eb



coth

�
n

a

b

	
: (8.3.31)

Further evaluation of (8.3.31) requires explicit values for a; b, with X D aC ib.
From the definition (8.2.18), one hasX2 D .B � iE/2 D B2�E2C2iE �B. In the
case of an electrostatic field, B D 0, one may choose a D 0; b D E . Then (8.3.31)
gives [23]

wSPC D e2E2

4
2

1X
nD1

1

n2
exp

�
�n
 m

2

eE



: (8.3.32)

For an electromagnetic wrench, choosing the frame in which the electric and
magnetic fields are parallel, one has a D B; b D E . Then (8.3.31) gives [8]
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wSPC D e2EB

4
2

1X
nD1

1

n
exp

�
�n
 m

2

eE



coth

�
n

B

E



: (8.3.33)

The probability wSPC is zero for a magnetostatic field, which does not decay, and
nonzero for an electrostatic field or an electromagnetic wrench, which do decay.

The probability (8.3.32) involves an exponential factor with exponent / �Ec=E ,
with Ec D m2=e the critical electric field. The critical electric field is the electric
counterpart of the critical magnetic field Bc (5.1.28); in SI units its value is

Ec D m2c3

„e D 1:3 � 1018 V m�1: (8.3.34)

In virtually all contexts one has E � Ec and the derivation of (8.3.31) is valid
only if this condition is satisfied. An exception where spontaneous pair creation is
of interest and where this condition is not satisfied is for a model of bare strange
stars (composed of u, d and s quarks) where there is a surface layer with an electric
field 	 Ec [2, 30]; in this case the surface layer contains degenerate electrons with
a sufficiently highly relativistic Fermi energy that strongly suppresses spontaneous
pair creation through the Pauli exclusion principle.

Although the Heisenberg-Euler Lagrangian allows one to determine the rate
of decay of an electric field, it does not determine the spectrum of the pairs
produced. For an electrostatic field, the spectrum of the pairs is an ill-defined
concept because each electron and positron is subject to ongoing linear acceleration.
For an electromagnetic wrench, the solution of Dirac’s equation factorizes into a
part describing the motion in the t-z plane and a part describing the motion in the
x-y plane, where E and B are assumed along the z axis. The solutions in the x-y
plane may be described in terms of the Landau states. Each pair produced must have
the same eigenvalues as the vacuum, which requires that the electron and positron
be in the same Landau state with the same spin. However, the approach based on
the Heisenberg-Euler Lagrangian provides no information on the distribution of the
pairs in these Landau states. (Note that integer n in the sum in (8.3.33) is not the
Landau quantum number.)

8.4 Waves in Strongly Magnetized Vacuum

The magnetized vacuum is birefringent. For weak fields, B � Bc , the properties
of the two natural wave modes are well known, having been derived in the 1930s
[12, 34]. These properties are rederived here and generalized to include the case
where the magnetic field is not necessarily weak. The high-frequency limit (! 	 m)
and the generalization to an electromagnetic wrench are also discussed.
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8.4.1 Weak-Field, Weak-Dispersion Limit

The properties of waves in a birefringent vacuum can be derived from the
Heisenberg-Euler Lagrangian for low-frequencies, ! � m, and weak fields,
B � Bc . The dispersion relations may be written in covariant form, k2 D k2˙,
or in terms of the refractive indices, jkj2=!2 D n2˙, with k2˙ D !2.1 � n2˙/. The
polarization vectors of the two modes are transverse, in the plane spanned by the
vectors t; a.

The ? and k Modes

The usual labelling of the vacuum wave modes is as the ? and k modes, but
unfortunately there are two different conventions. The more widely used convention
is to define these in terms of the direction of the electric vector in the wave relative
to the projection of the magnetostatic field on the plane orthogonal to k, with t D ek
and a D e?. The alternative convention [1] is to define the ? and k modes in terms
of the direction of the magnetic vector in the wave relative to the projection of the
magnetostatic field on the plane orthogonal to k and this interchanges the labelling
?$k compared with the more widely used convention. The k and ? modes were
denoted the two- and three-modes in the Russian literature [24].

Susceptibilities for the Magnetized Vacuum

The response of the vacuum can be described by the fourth rank susceptibility
4-tensor defined by the first of (8.3.18), viz. M�� D ����� ıF

�� . The nonzero
components for a magnetostatic field can be written in term of electric and magnetic
susceptibilities that are different perpendicular and parallel to the magnetostatic
field. These may be written as

�
.e/
? D � 2˛c

45


B2

B2
c

; �
.e/
k D ˛c

9


B2

B2
c

; �
.m/
? D 2˛c

45


B2

B2
c

; �
.m/
k D 2˛c

15


B2

B2
c

;

(8.4.1)

with ˛c D e2=4
"0 
 1=137 the fine structure constant, and Bc D m2
e=e 


4:4 � 109 T the critical magnetic field. The nonzero components of the fourth rank
4-response susceptibility tensor are

�0101 D �0202 D �1
2
�
.e/
? ; �0303 D �1

2
�
.e/
k ;

�1313 D �2323 D �1
2
�
.m/
? ; �1212 D �1

2
�
.m/
k ; (8.4.2)
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with the other nonzero terms determined the antisymmetry in both the first-written
and the second-written pair of indices. The construction of ˘��.k/ follows
from (8.3.18).

The simplest approximation to the wave modes corresponds to the weak-
anisotropy approximation, where only the transverse components t��.k/ D
�0˘

��.k/ of the response tensor contribute. The components for �; � D a; t are

taa D �!2�.e/? � jkj2
�
�
.m/
k sin2 � C �

.m/
? cos2 �

	
; tat D 0 D t ta;

t t t D �!2
�
�
.e/
k sin2 � C �

.e/
? cos2 �

	
� jkj2�.m/? : (8.4.3)

The properties of waves in the magnetized vacuum follow by inserting (8.4.3)
into (3.6.6) and (3.6.7).

Approximate Dispersion Relations

To lowest order in B2=B2
c , the resulting dispersion relations are

k2˙ D � .11˙ 3/˛c

90


B2

B2
c

!2 sin2 �; n2˙ D 1C .11˙ 3/˛c

90


B2

B2
c

sin2 �; (8.4.4)

and the polarization 4-vectors are

e
�
C D t� D .0; cos �; 0;� sin �/; e�� D a� D .0; 0; 1; 0/; (8.4.5)

where the k is assumed to be in the 1–3 plane. The polarization vectors (8.4.5) are
referred to as k and ? polarizations, respectively.

The next highest order terms in the expansion in B2=B2
c in the dispersion

relations (8.4.4) were given by Herold et al. [13]:

n2k D 1C ˛c
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B2

B2
c

� 26
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B4

B4
c

C 176

945

B6

B6
c

C 52

945

!2 sin2 �

˝2
e

B6

B6
c

!
sin2 �;

n2? D 1C C˛c




 
4

45


B2

B2
c

� 16

105

B4

B4
c

C 64

105

B6

B6
c

C 4

135

!2 sin2 �

˝2
e

B6

B6
c

!
sin2 �;

(8.4.6)

where the leading frequency-dependent terms are retained, and where the
C;� modes are relabeled as the k;? modes, respectively.
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Waves in an Electromagnetic Wrench

The wave properties (8.4.4) and (8.4.5) can be derived from the leading term in
the expansion of the Heisenberg-Euler Lagrangian in B=Bc for E D 0. Various
generalizations follow by relaxing these assumptions.

The inclusion of an electrostatic field with a component along the magnetostatic
field (an electromagnetic wrench) modifies both the dispersion relations and the
polarization vectors compared with the case E � B D 0. In place of (8.4.4) one has

n2˙ D 1C .11˙ 3/˛c

90


.E2 C B2/

B2
c

sin2 �; (8.4.7)

and in place of (8.4.5) one has

e
�
C D .0; B cos �;�E;B sin �/

.E2 C B2/1=2
; e�� D .0; E cos �; B;�E sin �/

.E2 C B2/1=2
: (8.4.8)

The results (8.4.7) and (8.4.8) include the special caseE ¤ 0,B D 0. The refractive
indices for the two modes are the same as for the case E D 0, B ¤ 0 with B
replaced by E , but with the polarization vectors of the two modes interchanged.

8.4.2 Vacuum Wave Modes: General Case

In the general case, when the weak field, B � Bc , and low-frequency, ! � m,
approximations are not made, the properties of the wave modes may determined by
the wave equation (8.1.43), with the regularized vacuum response tensor given by
the forms derived in � 8.1. In the weak-dispersion limit, one may approximate the
�i by evaluating them for k2 D 0, and this reproduces the results derived using the
Heisenberg-Euler Lagrangian. The generalization to B�>Bc without assuming weak
dispersion involves retaining the exact forms for the �i .k/.

General Dispersion Relations

The dispersion equation in 3-tensor form (8.1.48) may be solved for the wave
properties. Changing notation by writing n? D n sin � , nz D n cos � , and labeling
the two modes as ? and k, the resulting wave dispersion relations are

n2? D 1C �0

1C �0 � �1 sin2 �
; n2k D 1C �0 C �2

1C �0 C �2 cos2 �
: (8.4.9)
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The dispersion relations (8.4.9) are explicit only in the approximation where the
k-dependence of the �i .k/ is neglected. More generally, when the k-dependence is
included, (8.4.9) are implicit equations for n?; nk, respectively.

The polarization 3-vectors for the two modes are

e? D a; ek D
�
.1C �0 C �2/ cos �; 0;�.1C �0/ sin �

�

Œ.1C �0 C �2/2 cos2 � C .1C �0/2 sin2 ��1=2
: (8.4.10)

The ?-mode is strictly transverse, with e? D a D .0; 1; 0/. The k mode has a
longitudinal component, which is exhibited by writing

ek D Kkκ C Tkt

.K2
k C T 2k /1=2

; Kk D �2 cos � sin �; Tk D 1C �0 C �2 cos2 �:

(8.4.11)
The results in the remainder of this section follow from (8.4.9) and (8.4.10).

Weak-Field, Weak-Dispersion

First consider application of (8.4.9) and (8.4.10) to the weak-dispersion, weak-field
limit. In the weak-field limit the �i are small, of order B2=B2

c , and retaining only
the leading order terms in an expansion in B2=B2

c gives

�0 D � 2˛c

45


B2

B2
c

; �1 D 4˛c

45


B2

B2
c

; �2 D 7˛c

45


B2

B2
c

: (8.4.12)

To lowest order in an expansion in the �i the dispersion relations (8.4.9) are
independent of �0 and reduce to n2?;k D 1 C �1;2 sin2 � . On inserting the
values (8.4.12) into (8.4.9) the wave properties (8.4.4) and (8.4.5) are reproduced.

Strong-Field, Weak-Dispersion

The strong-field limit corresponds to B�>Bc . In this case, ˘0.k/ and ˘1.k/ are
small, being of order exp.�B=Bc/, and ˘2.k/ is approximated by (8.1.24). For
4m2 	 !2 � k2z , k2? � 2eB (8.1.24) reduces to (8.1.42), giving �2 

.�0e

2=12
2/.B=Bc/, and one has

n2? D 1C ˛c

3


�
1 � 3 ln.2B=Bc/

2B=Bc

�
sin2 �;

n2k D

8̂
<
:̂
1C ˛c

3


B

Bc
sin2 � for B � .3
=e2/Bc;

1

cos2 �
for B 	 .3
=e2/Bc:

(8.4.13)
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The terms retained in (8.4.13) reproduce the leading terms in an expansion derived
by Tsai and Erber [29], cf. also [14]. In the limit B 	 .3
=e2/Bc D 2:5 � 1013 T ,
the modes defined by (8.4.13) may be interpreted as MHD modes with Alfvén speed
vA 	 1. The ? and k modes are counterparts of the magnetoacoustic and Alfvén
modes, respectively.

High-Frequency, Weak-Field Limit

The foregoing results for the wave dispersion apply for frequencies well below the
pair-creation threshold, !2 sin2 � � 4m2. The response tensor in the form (8.3.4)–
(8.3.7) applies both below and above this threshold and so may be used to derive the
wave properties at higher frequencies.

The dispersion at sufficiently high frequencies necessarily approaches the (un-
magnetized) vacuum value k2 D 0, implying that weak-dispersion limit applies at
sufficiently high frequency. Denoting the values in the weak-dispersion limit by an
asterisk, the 	i that appear in (8.3.7) reduce to

��
i D � e4

4


Z 1

0

d� .1 � �2/ 	�
i

�
Z 1

0

d˛˛ cos

 
m2˛ C .1 � �2/2 ˛3e2.E2 C B2/!2 sin2 �

48

!

	�
1 D

�
1 � �2

3



E2 C

�
1

2
C �2

6



B2;

	�
2 D

�
1

2
C �2

6



E2 C

�
1 � �2

3



B2; 	�

3 D �1 � �2
2

EB; (8.4.14)

with � D ˇ=˛. The ˛-integral in (8.4.14) is performed in terms of the derivative,
Gi0 .z/, of an Airy function

Gi .z/ D 1




Z 1

0

dt sin

�
zt C 1

3
t3


: (8.4.15)

The integral in (8.4.14) gives

��
i D e4

.2�2/2=3m4

Z 1

0

d�
	�
i

.1� �2/1=3
Gi0 .Œ2=�.1 � �2/�2=3/;

� D !.E2 C B2/1=2 sin �

2mBc
: (8.4.16)
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The limiting forms of Gi0 are

Gi0 .z/ D � 1


z2
for z 	 1; Gi0 .z/ D � .2=3/

2
31=3
for z � 1: (8.4.17)

On using (8.4.17) to approximate (8.4.16), the upper limit applies for � � 1 and
leads to the wave properties that reproduce those derived using the weak-field limit
of the Heisenberg-Euler Lagrangian.

The lower limit in (8.4.17) applies for � 	 1 and leads to

n2? D 1 � 2A
.E2 C B2/

B2
c

sin2 �; n2k D 1 � 3A .E
2 C B2/

B2
c

sin2 �; (8.4.18)

with A D 3Œ� .2=3/�2˛c=7

1=2� .1=6/.2�2/2=3. The polarization vectors are the

same as in (8.4.8).

High Frequency, n.!/ < 1

According to (8.4.18) the refractive indices at high frequencies are less than unity,
whereas they are greater than unity at low frequencies. The limit k2 ! 0 for !!1
must be approached from above, k2 > 0. Put another way, the difference between
the refractive index and unity for each mode must change sign, from positive to
negative, with increasing!, and approach zero from negative values. This is implied
by the sum rule Z 1

0

d! Œn.!/ � 1� D 0; (8.4.19)

which is well known for an isotropic system [3]. This sum rule requires a negative
contribution, n?;k.!/ < 1, at high frequency to balance the positive contribution,
n?;k.!/ > 1, at low frequency. The refractive indices depend on ! only in the
combination � D .3=2/.!=m/.B=Bc/; they increase monotonically with � for
� < 1:2, decrease monotonically for 1:2� � 24, crossing unity, and then increase
towards the limit (8.4.18).

The form (8.4.16) describes the real part of ��
i , and the corresponding imaginary

part describes damping due to one-photon absorption. The real and imaginary parts
are related by the Kramers-Kronig relations. The imaginary part may be identified
by noting that the real and imaginary parts of the Airy functions satisfy the Kramers-
Kronig relations: the imaginary part is obtained from (8.4.16) by the replacement
Gi0 .z/ ! �iAi0 .z/.

8.4.3 Vacuum Plus Cold Electron Gas

The combination of the magnetized vacuum and a cold electron gas has interesting
properties, due to waves in the vacuum alone having refractive index greater than
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unity and being linearly polarized, and waves in the electron gas alone having
refractive index less than unity and being approximately circularly polarized. The
so-called vacuum resonance is a feature of the combined system.

Combined Susceptibility Tensor

The combined effect of dispersion in a cold electron gas and the magnetized
vacuum is of particular interest in connection with X-ray pulsars, where the plasma
parameters satisfy !p � ˝e � m, and the frequencies of interest, !�<˝e ,
include the cyclotron resonance and its low harmonics [1, 9, 15, 16, 20–22]. The
response tensor for such a plasma is the sum of contributions from the plasma
and the magnetized vacuum. Qualitatively, at high frequencies, ! 	 ˝e, the
difference between the refractive indices and unity for the modes of the plasma
alone is negative and decreases in magnitude with increasing ! 	 ˝e , whereas
the contribution from the magnetized vacuum is positive and is independent of !
for ! � m. The natural modes of the combined system at ˝e � ! � m must
be plasma-like at lower frequencies where the negative contribution dominates and
vacuum-like at higher frequencies where the positive contribution dominates.

The susceptibility tensor for the vacuum plus cold electron gas is the sum of
the separate susceptibility tensors for the vacuum and the cold electron gas. It is
convenient to use 3-tensor notation in this case. The vacuum contribution is given
by (8.1.47), and the susceptibility for a cold electron gas follows from (1.2.29)
with (1.2.36),

χc.!/ D
0
@
S � 1 �iD 0

iD S � 1 0

0 0 P � 1

1
A ; (8.4.20)

with

S � 1 D � X

1 � Y 2
; D D � �XY

1 � Y 2
; P � 1 D �X; (8.4.21)

with X D !2=!2, Y D ˝e=!, and with � D 1 for an electron gas, and � D 0 for a
pure pair plasma.

Dispersion Equation for Combined System

For an electron gas, D ¤ 0, the combined plasma plus vacuum is gyrotropic, so
that the natural modes are elliptically polarized. This general case may be treated as
a modified form of a cold electron gas, with the �i assumed independent of k. The
dispersion equation reduces to the cold-plasma form (3.2.2) and (3.2.4),

An4�Bn2CC D 0; n2 D n2˙ D B ˙ F

2A
; F D .B2�4AC/1=2: (8.4.22)
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The generalization of the coefficients (3.2.3) to include the vacuum contribution
gives

A D .1C �0/.1C �0 � �1 sin2 �/�ŒP 0 cos2 � C S 0 sin2 ��;

B D .1C �0/.S
02 �D2/ sin2 � C P 0S 0Œ.1C �0/.1C cos2 �/� �1 sin2 ��;

C D P 0.S 02 �D2/; (8.4.23)

with

S 0 D S C �0: P 0 D P C �0 C �2: (8.4.24)

An explicit expression for F 2 is

F 2 D ŒP 0S 0.1C �0 � �1/ � .1C �0/.S
02 �D2/�2 sin4 �

C4.1C �0/
2P 02D2.1C �0 � �1 sin2 �/ cos2 �: (8.4.25)

The results (8.4.22)–(8.4.25) reduces to the expression given by (3.2.7) for �i ! 0,
and they give the vacuum modes (8.4.9) for P; S ! 1, D ! 0.

The transverse parts of the polarization of the modes become elliptical when the
plasma is included, and may be described by the axial ratio, T , of the polarization
ellipse. As in a cold plasma, T satisfies a quadratic equation: the generalization
of (3.2.6) is

T 2 � 2b T � 1 D 0; b D ŒP 0S 0.1C �0 � �1/� .1C �0/.S
02 �D2/� sin2 �

2.1C �0/P 0D cos �
;

(8.4.26)

and the solutions, T D T˙, that generalize (3.2.7) are

T˙ D b ˙ .1C b2/1=2: (8.4.27)

These become linear polarizations, T˙ ! 0;1, for b ! 1 and circular
polarizations, T D ˙1, to b ! 0.

8.4.4 Vacuum Resonance

The combination of plasma dispersion and vacuum polarization leads to an intrinsi-
cally new effect, referred to as the vacuum resonance [9, 20, 21]. This corresponds
to the parameter b in (8.4.26) passing through zero, at which point the modes
are circularly polarized. In the cold electron gas alone, the modes are elliptically
polarized in general, and are only circularly polarized for parallel propagation.
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On inserting the expressions (8.4.21) in (8.4.26), assuming that X and the �i are
all much smaller than unity, and expanding in these quantities, one finds

b D � .1 � Y 2/ sin2 �

2XY cos �

�
XY 2

1 � Y 2 C 3ı

�
; (8.4.28)

where (8.4.12) is used to write �2 ��1 D 3ı with ı D .˛c=45
/.B
2=B2

c /. One can
have b D 0 for X � 1 and Y 2 > 1, when the two terms inside the square brackets
in (8.4.28) cancel each other. This cancelation occurs at an electron number density
ne D nc with (in ordinary units)

nc D 1

60
2

�
mc2

„

3 j1� Y 2j

Y 4

�
B

Bc


4
; (8.4.29)

with Y 2 > 1.
The vacuum resonance is of interest in connection with hard photons escaping

from a pulsar [31]. If the photon is emitted in a region where the magnetic field is
strong enough for the dispersion to be dominated by the vacuum polarization, as
it propagates away from the star B decreases, and it can enter a region where the
dispersion due to the plasma dominates.

Interpretation of the Vacuum Resonance

In interpreting the vacuum resonance, there are two separate effects: crossing of the
dispersion curves and the vanishing of the linear polarization. Both effects occur at
F D 0, implying n2C D n2� and jT˙j D 1. The significance of the vacuum resonance
is associated with the polarization of the modes, which changes from nearly linear to
nearly circular as the resonance is crossed. This may be illustrated by considering a
case where there is a mode crossing, n2C D n2�, but no change from linear to circular
polarization. Such a case is the vacuum plus a pure pair plasma.

For a pure pair plasma, when one has D D 0, so that F is a perfect square.
The � solution implies T� D 0, so that the polarization vector corresponds to the
? mode with the C mode implying TC D 1 corresponding to the transverse part of
the polarization of the k mode. For D D 0, the refractive indices for the two modes
become

n2C D .S C �0/.P C �0 C �2/

.1C �0/Œ.P C �0 C �2/ cos2 � C .S C �0/ sin2 ��
;

n2� D S C �0

1C �0 � �1 sin2 �
: (8.4.30)

The ˙ modes in (8.4.30) reduce to the k mode (8.4.9), and ? mode (8.4.10),
respectively, in the absence of the plasma, S;P ! 1; they reduce to the o and
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x modes for a pure pair plasma, given by (3.3.15) and (3.3.14), respectively, when
the vacuum contribution is neglected, �i ! 0. In the approximation in which
X and the �i are assumed small, the refractive indices of the two modes are
approximated by

n2C�1 
 � XY 2

1 � Y 2 cos2 ��X sin2 �C7ı sin2 �; n2��1 
 � XY 2

1 � Y 2
C4ı sin2 �:

(8.4.31)
In this case the two refractive index curves pass through unity at different frequen-
cies that both depend on � ; the two curves also cross each other at another point,
specifically atX=.1�Y 2/ D 3ı, independent of � . However, there is no effect on the
polarization, with the C mode being a combination of k-transverse and longitudinal
polarization, and the � mode having ? polarization.

The new feature in the vacuum resonance is that the contributions to the linear
polarization from the vacuum and from the plasma cancel, resulting in circular
polarization. As the case of a pure pair plasma illustrates, the refractive indices
of the two modes can pass through unity (as functions of either ! or �) without
affecting the polarization.

8.5 Photon Splitting

Photon splitting is the decay of a single photon into two photons, and it relies on
the quadratic nonlinear response of the magnetized vacuum. Photon splitting is of
interest in connection with emission from pulsars [1, 6, 11].

8.5.1 Photon Splitting as a Three-Wave Interaction

Photon splitting is a three-wave process, and the probability for photon splitting in
vacuo is formally the same as that for three-wave interactions in a plasma (� 5.7.1 of
volume 1), with the nonlinear response tensor interpreted as that of the magnetized
vacuum.

Quadratic Nonlinearity of the Vacuum

The quadratic nonlinear response tensor of the vacuum may be calculated in three
different ways. At low frequencies, ! � m, the nonlinearity can be treated
using the Heisenberg-Euler Lagrangian; the quadratic nonlinear response is derived
in this way in � 8.3.3. A general form of this approach involves calculating the
Heisenberg-Euler Lagrangian using the proper-time method. Using the resulting
form, (8.2.38), allows one to calculate the splitting for arbitrarily strong fields; it
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also allows one to include an electric field (electromagnetic wrench) [32]. For weak
fields, and alternative approach involves treating the virtual electrons in vacuum
as unmagnetized, and calculating the interaction involving three photons from the
amplitude of a Feynman diagram. The lowest order diagram is a box, with three
of the four vertices corresponding to the three photons, and the fourth to a zero-
frequency field identified as the background field, B. Higher order terms in B are
included by considering higher order diagrams with the additional vertices also
associated with B. Only diagrams with an even number of sides contribute to the
response of the unmagnetized vacuum, and hence the next lowest order contribution
is / B3 from the hexagon diagram, cf. Fig. 8.1. The contribution from the hexagon
diagram dominates, for B=Bc � 1, leading to a transition amplitude / .eB/3 and
hence a transition rate / ˛3cB

6.
An exact treatment of photon splitting involves calculating the quadratic nonlin-

ear response tensor for the magnetized vacuum without assuming low frequencies
(or weak fields). As with the linear response tensor for the magnetized vacuum,
� 8.1, there are two general approaches to this calculation, involving using different
forms for the electron propagator. Using the Géhéniau form (5.3.13) for the electron
propagator leads to an expression for the nonlinear response tensor that involves
integrals over elementary functions [26]. This approach is restricted to the vacuum,
and does not allow the inclusion of real electrons. An alternative approach, as for the
linear response � 8.1.4, involves using the vertex formalism, which allows the theory
to be developed in momentum space rather than coordinate space. This allows one
to include the response of real electrons using the same formalism. The theory of
photon splitting may the be extended to include the effect of the plasma, but this is
significant only under extreme conditions [7], and is not discussed here.

Kinematics of Photon Splitting

The birefringence of the magnetized vacuum implies six possible three-wave
interactions involving the two modes. To see this, let a specific splitting be
denoted by M;P;Q Dk;?, denoting the k- and ?-modes. Due to the crossing
symmetry of the probability of the three-wave interaction, the probability for
M ! P C Q also describes P ! M C Q and Q ! M C P simply by
reversing the signs of the relevant wave 4-vectors. There are four different three-
wave interactions, corresponding to MPQ D???; ??k; ?kk; kkk. Only the first
and third of these are allowed, with the other two being zero because the projection
of the polarization vectors onto the quadratic nonlinear response tensor gives zero,
sometimes attributed to CP invariance, as discussed below.

Conservation of 4-momentum in a photon splitting process requires that the
three-wave matching condition on the wave 4-vectors, k D k0 C k00, be satisfied.
This condition is

! D !0 C !00; k D k0 C k00: (8.5.1)
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A splitting is kinematically forbidden if the dispersion relations do not allow (8.5.1)
to be satisfied for that specific splitting.

Consider the three-wave matching conditions (8.5.1) for waves in a magnetized
vacuum in the weak-dispersion limit. To lowest order inB=Bc , the refractive indices
are approximated by unity. The conditions (8.5.1) are satisfied only if the three
photons are collinear. To show this, note that when one has k2 D 0, k02 D 0,
k002 D 0, the condition k2 D .k0 C k00/2 requires k0k00 D 0, that is, !0!00 D k0 � k00.
Then !0 D jk0j, !00 D jk00j requires that to satisfy !0!00 D k0 � k00 the angle
between k0, k00 must be zero. A similar consideration of k002 D .k � k0/2 implies
that the angle between k, k0 is 
 . It follows that the three photons are collinear.

Assuming that the three photons are collinear, one is free to make a Lorentz
transformation such that the initial photon is propagating perpendicular to the
magnetic field. (An exception is when the initial photon is propagating along B,
but then photon splitting is forbidden.) Specifically, for a photon propagating in
an arbitrary direction a boost along B can be made such that in the new frame
the photon is propagating perpendicular to B. Then the two final photons are
propagating perpendicular to B in the same direction as the initial photon. The
perpendicular wavenumbers, k? D ! sin � , k0? D !0 sin � 0, k00? D !00 sin � 00, and
the magnetic field, B, are unchanged as a result of this Lorentz transformation.
It follows that in the laboratory frame, the collinearity condition (for weak disper-
sion) reduces to sin � D sin � 0 D sin � 00. Choosing the frame in which all three
photons are propagating perpendicular to B to treat the splitting, the matrix element
is expressed in terms of the variables in the laboratory frame simply by interpreting
the wavenumbers according to k? D ! sin � , k0? D !0 sin � , k00? D !00 sin � .

Probability for Photon Splitting

The probability for photon splitting is formally identical to the probability for a
three-wave interaction, � 5.7.1 of volume 1. The probability is given by (5.7.4) with
(5.7.5) of volume 1, viz.

wMPQ.�k; k0; k00/ D 4�30
RM.k/RP .k

0/RQ.k00/
!M .k/!P .k0/!Q.k00/

�j˘MPQ.�k; k0; k00/j2 .2
/4ı4.kM � k0
P � k00

Q/;

˘MPQ.�k; k0; k00/ D e
��
M .k/e�P .k

0/e�Q.k
00/˘.2/

���.�kM ; k0
P ; k

00
Q/: (8.5.2)

The probability (8.5.2) applies when all three wave modes are different; if the modes
P , Q are the same, the factor 4 is replaced by 2.

In photon splitting, the modes are identified as those of the magnetized vacuum,
and the quadratic response tensor, ˘.2/

���.k0; k1; k2/, is identified as that of the
magnetized vacuum with k0 D �k, k1 D k0, k2 D k00. For photon splitting M !
P CQ it is convenient to rewrite (8.5.2) as
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wMPQ.�k; k0; k00/ D �0
jMMPQ.�k; k0; k00/j2

4!!0!00 .2
/4ı4.k � k0 � k00/;

MMPQ.�k; k0; k00/ D e
��
M e�P e

�
Q�0˘

.2/
���.�k; k0; k00/; (8.5.3)

where k� D k
�
M , k0� D k0�

P , k00� D k
00�
Q implicitly satisfy the relevant dispersion

relation, and where the ratio of electric to total energy for each of the modes is
approximated by 1=2. The quantity MMPQ.�k; k0; k00/ is referred to as the matrix
element for the processM ! P CQ.

8.5.2 Three-Wave Interactions in the Vacuum

In treating photon splitting in the magnetized vacuum, the photons are identified
as in the k and ? modes of the magnetized vacuum. In the weak-dispersion limit,
where all three photons are collinear, the invariants kk0, kk00, k0k00 all vanish, and
the two directions in the transverse plane, b�1 / k˛F

˛�, b�2 / k˛F˛�, are the
same for all three photons. These properties lead to the matrix elements for three
of the possible six splittings being zero in the weak-field, weak-dispersion limit.
The matrix element is nonzero only if there is an even number of photons with
k-polarization and an odd number with ?-polarization. One interpretation of this
constraint is in terms of CP-invariance [1].

CP Invariance in the Weak-Field Limit

The selection rule on the modes for photon splitting arises as follows. The 4-vectors
.ek/� D b

�
1 / k˛F

˛� and .e?/� D b
�
2 / k˛F˛� appear in the quadratic response

tensor (8.3.26) and in the projection of it onto the relevant polarization vectors in the
matrix element (8.5.2). Consider the terms in (8.3.26) that are linear in the strength
of the external field. The terms shown explicitly are 4

�
k0k1 g

�� � k
�
1 k

�
0

�
k2�F

��

and 7k0˛k1ˇ��˛�ˇk2�F��. We have k0 ! �k, k1 ! k0, k2 ! k00 here. The
projection of the polarization vectors onto these terms gives zero. Term by term,
this arises as follows. The term proportional to g�� gives zero due to kk0 D 0;
the term proportional to k�k0� gives zero because the waves are transverse; and the
projection onto k˛k 0̌ ��˛�ˇ vanishes because k, k0 are parallel. Hence, the lowest
order contribution comes from the terms proportional to the cube of the external
magnetic field in (8.3.26).

It is simplest to calculate the matrix element in the frame in which the three
photons are propagating perpendicular to the magnetic field. In this frame, the
polarization vectors of the ? and k modes are along the 2 and 3 axes, respectively.
Hence the only components of the quadratic response tensor that contribute are
˘.2/��� with �; �; � D 2; 3. By inspection of (8.3.26) one finds that there is a
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nonzero contribution only if all three of �; �; � are equal to 3, or if one is equal
to 3 and the other two to 2. The terms written explicitly in (8.3.26) have coefficients
16 and 26, and when the symmetries are taken into account, the matrix elements
for these two cases are in the ratio 48 to 26. The fact that the matrix elements are
nonzero only if an even number of the photons have k polarization is a selection rule
for photon splitting.

Adler [1] gave an argument for the selection rule based on the invariance of QED
under the parity, P, and charge-conjugation, C, transformations to explain why half
the possible splitting are forbidden. The invariance of QED under C implies that
only even powers of the electromagnetic field appear, and hence that the theory is
invariant under B ! �B, E ! �E . The P transformation reverses the signs of
vectors but not of axial vectors, implying the QED is invariant under k ! �k,
B ! B, E ! �E . Combining these, CP invariance requires that the theory be
unchanged by the replacements

CP-transformation: k ! �k; B ! �B; E ! E : (8.5.4)

Applying the CP transformation to the wave modes (8.3.13), one finds e? ! Ce?,
e2 ! �e2, so that the ? mode has eigenvalue �CP D C1 and k mode has eigenvalue
�CP D �1 under this transformation.

In photon splitting, CP must be conserved. Hence, the selection rule is satisfied
if and only if the number of photons of mode 2 is even. Thus the allowed decays
(when only this selection rule is taken into account) are ?!? ;? and k!? ; k.
An unrelated constraint forbids ?!? ;? at low frequencies and weak fields.

8.5.3 Decay Rates in the Weak-Field Approximation

The decay rate is given by integrating the relevant probability over the phase space
of the final photons:

RMPQ D
Z

d3k0

.2
/3
d3k00

.2
/3
wMPQ.�k; k0; k00/: (8.5.5)

On noting the dependence of the probability (8.5.3) on k, k0, k00, the integral that
needs to be evaluated is

J.!/ D
Z

d3k0

.2
/3
d3k00

.2
/3
!!0!00 .2
/4ı4.k � k0 � k00/: (8.5.6)

It is straightforward to evaluate J.!/ in the weak-dispersion limit, k2 D 0, k02 D 0,
k002 D 0. After performing the k00-integral over ı3.k � k0 � k00/ and using the
dispersion relations to write jkj D !, jk0j D !0, jk00j D !00, one has
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J.!/ D
Z !

0

d!0!02

2


Z 1

�1
d cos�!!0!00 ı.! � !0 � !00/; (8.5.7)

with !00 D .!2 C !02 � 2!!0 cos�/1=2, where � is the angle between k, k0. The
cos�-integral is performed over the remaining ı-function, and the!0-integral is then
elementary, giving

J.!/ D !5

60

: (8.5.8)

In the approximation in which the dispersion is neglected, the decay rate for
photon splitting has a simple form for B=Bc � 1, ! � m. This is

RMPQ D ˛3cm

60
2

�
B sin �

Bc


6 �!
m

	5 jMMPQ.B/j2; (8.5.9)

with M;P;Q D?; k. The nonzero transitions for B=Bc � 1 have

M???.0/ D 48

315
; M?kk.0/ D 26

315
: (8.5.10)

The other transition rates are equal to 0 in this approximation. These results are
derived in the approximation in which the refractive indices are all assumed equal
to unity, and when n? � 1 ¤ 0 is taken into account, the splitting ?!? ;? is also
forbidden.

Inclusion of Weak Dispersion

The weak-dispersion approximation needs to be complemented with a detailed
consideration of the implications of the actual dispersion. In the absence of dis-
persion, the three photons are collinear, and hence one has cos� D 1 in (8.5.7). The
inclusion of the small differences of the refractive indices from unity changes the
angles between the three photons slightly. If this change tends to reduce cos� then
the process is allowed and (8.1.21) is a good approximation to the integral J.!/.
However, if this change tends to increase cos�, then cos� becomes nonphysical,
and the three-wave matching cannot be satisfied. Such splittings are kinematically
forbidden and in such cases (8.1.21) is to be replaced by J.!/ D 0.

In the weak-field low-frequency limit, for the two modes one has k D !.1 C
ın?;k/ with ınk D .7=4/ın? > ın?, where (8.3.13) is used. Splitting is forbidden
for jkj > jk0j C jk00j, but not for jkj < jk0j C jk00j, when a small angle,  say,
between k0 and k00 allows k D k0 C k00 to be satisfied. This condition forbids
the splittings k!? ;? and k!? ; k. For the splittings ?!? ;? and k!k ; k the
! ! 0 limits of ın?;k are inadequate to determine whether three-wave matching
is possible. Adler [1] considered the frequency dependence of the refractive indices
and argued that in an expansion in !=m � 1, the lowest order nonzero contribution
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is / !2 and is positive for both modes. When this dependence is taken into account,
one finds jkj � jk0j C jk00j / n00.0/Œ!03 C !003 � .!0 C !00/3 < 0, with n00.!/ D
d2n.!/=d!2, which applies for both ?!? ;? and k!k ; k. It follows that both
the splitting ?!? ;? and k!k ; k are forbidden in the low frequency regime. The
only allowed splitting is ?!k ; k.

Low-Frequencies and Arbitrary Field Strengths

Assuming that the low-frequency approximation remains valid, one may relax the
weak-field approximation by deriving the wave properties from the full Heisenberg-
Euler Lagrangian, rather that using the weak-field expansion in the form (8.3.26).
The nonzero matrix elements are [26]:

M?kk.B/ D
�
B

Bc


4 Z 1

0

ds

s
e�sBc=B


 �
� 3

4s
C s

6




C
�
1

4
C s2

6



1

sinh2 s
C s

2

cosh s

sinh3 s

�
(8.5.11)

M???.B/ D
�
B

Bc


4 Z 1

0

ds

s
e�sBc=B



3

4s

cosh s

sinh s

C
�
3

4
� s2



cosh2 s

sinh2 s
� 3s2

2

cosh2 s

sinh2 s

�
: (8.5.12)

To obtain the weak-field limit of (8.5.12), one expands the hyperbolic functions for
s � 1; low order terms cancel, and carrying out the integral for the leading nonzero
term gives the result (8.5.10).

8.5.4 S -Matrix Approach

An alternative treatment of photon splitting is based on the S -matrix approach [19].
Formally, this approach is equivalent to treating the splitting using (8.5.3) with the
quadratic response tensor identified as the vacuum contributions to the form (9.7.14)
with (9.7.15). The S -matrix elements involve sums over quantum numbers. The sum
over the spins is straightforward, and the integral over pz, although tedious, can be
performed using elementary methods. The sum over n remains, and its evaluation
contains some subtleties [33].

The S -matrix contains terms with odd powers of the frequencies, and only the
terms cubic in the frequencies (proportional to !!0!00) is considered here. After
summing over the spins and integrating over pz, these terms are of the form
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Fig. 8.2 The rates of
splitting of a ? photon into
two ? photons (light circles)
and into two k photons (dark
circles) are plotted on a
log-log scale (tick marks
represent powers of 10) as
functions of B=Bc (From
[33], reprinted with
permission AIP)

Sf i D 4
2.4
˛c/
3=2.!!0!00/1=2

.2V /3=2
ı.kx � k0

x � k00
x /ı.! � !0 � !00/

1X
nD0

T .n; B/;

(8.5.13)

where the photons are collinear along the x axis. The T .n;B/ do not depend on
the frequencies, and the remaining factors do not depend on B . Explicit expressions
for the T .n;B/ ! TMPQ.n;B/ for the two independent splittings, MPQ D?kk,
MPQ D???, are relatively cumbersome [33], and are not written down here;
they involve only powers that depend on n;B , and logarithms involving ratios of
"0n D m.1C 2nB=Bc/

1=2 with different values of n.
The decay rate is

RMPQ D 1

4

˛3cm

60
2

�!
m

	5 ˇ̌
ˇ

1X
nD0

TMPQ.n/
ˇ̌
ˇ
2

: (8.5.14)

In practice, the sum over n must be terminated as some nmax. The Euler-Maclaurin
summation formula is used to include the contributions from n > nmax:

1X
nD0

T .n/ D T .0/C � � � C T .i � 1/C 1

2
T .i/

C
Z 1

i

dn T .n/ � 1

12
T 0.i/C 1

720
T 000.i/C � � � ; (8.5.15)

where primes denote derivatives. The choices of i D nmax and of the number of
derivatives of T .i/ to be retained are made by trial and error, such that increasing
the numbers does not lead to significant improvement beyond some predetermined
accuracy. The sum over n converges increasingly rapidly with increasing B ,
allowing the sum to be truncated at small values for B�>Bc .
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As shown in Fig. 8.2, for the splitting of photons in the? mode, the weak-
field dominance of the channel ?!? ;? compared to the channel ?!k ; k for
B � Bc , reverses forB�>Bc , and the relative rate for ?!? ;? becomes negligible
for B 	 Bc .

Photon Splitting in an Electromagnetic Wrench

The presence of an electric field along the magnetic field (an electromagnetic
wrench) modifies the properties of photon splitting [32]. The inclusion ofE=B ¤ 0

modifies photon splitting due to two effects: it modifies the properties of the
wave modes and it affects the form of the quadratic nonlinear response tensor.
The important change in the properties of the wave modes is on the polarization: the
identification as the ?-mode and k-mode, respectively, is no longer appropriate, with
the polarizations (8.4.8) of both modes being mixtures of ?- and k-polarizations.
The quadratic nonlinear response tensor includes additional terms that depend on
E=B ¤ 0, and these need to be included in the matrix elements for the various
possible splittings.

The inclusion of E=B ¤ 0 has only a small effect on splitting for E=B � 1 and
B=Bc � 1. The components of an exact expression for the quadratic nonlinear
response tensor are evaluated by expanding in E=B � 1 for arbitrary B=Bc ,
and used to calculate the matrix elements for the various splittings [32]. The most
notable effect is that for B=Bc 	 1, the splitting C ! CC, which reduces to
the forbidden k!kk for E=B D 0, becomes of comparable strength to the other
splittings for a sufficiently strong B=Bc , that depends on the value of E=B . The
argument based on CP invariance remains valid, but it does not exclude this splitting.
Specifically, the matrix element for a nonzero splitting can depend only even
powers of E , and the additional splitting occurs because an additional component
of the polarization vector proportional to E combines with an additional term
proportional to E in the quadratic nonlinear response tensor to give an intrinsically
new contribution that satisfies this requirement.
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21. P. Mészáros, J. Ventura, Phys. Rev. D 19, 3565 (1979)
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Chapter 9
Response of a Magnetized Electron Gas

Dispersion in a magnetized, quantum electron gas was first discussed in
the nonrelativistic case in the 1960s and 1970s [2, 6, 7, 15, 24]. Extension to the
relativistic case, with one early exception [20], was carried out mainly in the
1980s [3, 5, 8, 13] and continues to the present [11, 14, 22]. An exact expression
for the linear response tensor includes the following quantum effects: degeneracy,
the quantization of the Landau states, the spin, the quantum recoil and dispersion
associated with one-photon pair creation. It involves sums over two sets of quantum
numbers, denoted q D �; n; pz; s and q0 D �0; n0; p0

z; s
0 here. This leads to a

cumbersome form, and only a few special cases, notably parallel propagation, have
been explored in any detail.

The approach adopted in this chapter is to start from the general form, involving
sums over q; q0, and first perform the sums over s; s0 and �; �0; this is done in � 9.1. In
� 9.2, it is shown that the resulting expression for the response tensor may be evalu-
ated in terms of a single relativistic plasma dispersion functions (RPDF), evaluated
at the resonant values of p�k . The response of a thermal electron gas is discussed
in � 9.3, where the RPDF is evaluated in some particular electron distributions.
Special and limiting cases of the linear response tensor are discussed in � 9.4. Some
specific results for wave dispersion in relativistic quantum magnetized plasmas are
presented in � 9.5. Spin-dependence is included in � 9.6. Nonlinear response tensors
for a relativistic magnetized quantum plasma are written down in � 9.7.

9.1 Response of a Magnetized Electron Gas

General expressions for the linear response tensor for a magnetized Dirac electron
gas are written down and discussed in this section. The sums over spin states,
s; s0, and electron and positron states, �; �0, are carried out explicitly. The neglect
of quantum effects is then discussed, and the reduction to nonquantum forms is
outlined.

D. Melrose, Quantum Plasmadynamics: Magnetized Plasmas, Lecture Notes
in Physics 854, DOI 10.1007/978-1-4614-4045-1 9,
© Springer Science+Business Media New York 2013
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394 9 Response of a Magnetized Electron Gas

9.1.1 Calculation of the Response Tensor

There are several alternative methods for calculating the response of a relativistic
quantum electron gas in the absence of a magnetic field, and these may be adapted
to apply in a magnetic field. Three methods are discussed in � 8.4 of volume 1:
the forward-scattering method, the Wigner-matrix method and the density-matrix
approach. From a quantum mechanical viewpoint, these three methods may be
interpreted in terms of different pictures, where a picture involves the choice of
how to include time dependence in quantum mechanics. The forward-scattering
method is based on the S -matrix approach, also called the Green function approach,
which involves adopting the interaction picture. In the interaction picture the wave
functions evolve due to the interaction Hamiltonian, and the operators evolve due
to the unperturbed Hamiltonian. The Wigner function in nonrelativistic quantum
mechanics is defined in terms of the outer product of the Schrödinger wave
function with its adjoint. The evolution of the Wigner function is determined
by the Schrödinger equation. The Wigner matrix in the relativistic case is a
generalization of the nonrelativistic Wigner function; it is a 4 � 4 Dirac matrix
defined in terms of the outer product of the Dirac wave function and its adjoint.
The evolution of the Wigner matrix is determined by the Dirac equation, and this
corresponds to choosing the Schrödinger picture. The density matrix is defined as
an operator constructed from the state function (a vector in a Hilbert space, usually
written as a ket) and its adjoint (a bra). The density-matrix method is based on
the Heisenberg picture, in which all the time dependence is in the operators, with
the density-matrix interpreted as an operator. Expressions for the response tensor
for a nonrelativistic magnetized quantum electron gas were derived in the 1960s
using both the density-matrix method [15, 24] and the Wigner-function method [7].
The S -matrix approach is adopted here, but it should be emphasized that the three
methods are formally equivalent, and the choice of method has no effect on the
result.

In the S -matrix approach, the linear response tensor for a relativistic quantum
electron gas in a magnetic field is derived from the Feynman amplitude for
the bubble diagram. As discussed in � 8.1 of volume 1, the amplitude for the
bubble diagram gives the vacuum polarization tensor. By replacing the electron
propagators in the bubble diagram by their statistical average over the electron gas,
the calculation of the vacuum polarization tensor also includes the response tensor
for the electron gas.

9.1.2 Vertex Form of ˘ ��.k/

The general expression for the linear response tensor, derived from the amplitude
for the bubble diagram using the vertex formalism, is referred to as the vertex form.
This form is
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q q’

qq q’

kkkk kq’

q’

qk

a b c

Fig. 9.1 Cuts in the upper and lower electron lines in the Feynman bubble diagram (a) produce
the forward scattering diagrams (b) and (c), respectively

˘��.k/ D �e
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�;q;�0 ;q0

Z
dpz
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Z
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z

2

2
ı.�0p0

z � �pz C kz/

�
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.�0 � �/C �n�q � �0n�0

q0

! � �"q C �0"q0

�
� �0�
q0q .k/

���
� ��0

qq0 .�k/
��
; (9.1.1)

with
�
� ��0

qq0 .�k/
�� D �

� �0�
q0q .k/

���
. The resonance condition is to be imposed by

making the replacement ! ! ! C i0 in the denominator.
The response tensor (9.1.1) includes the response of the magnetized vacuum,

which corresponds to the term 1
2
.�0 � �/ in the numerator. Retaining only the

vacuum terms gives an unregularized form of the vacuum polarization tensor, and a
regularization procedure needs to be used to derive the (physically relevant) vacuum
response tensor, as discussed in � 8.1. The terms in (9.1.1) that are proportional to
an occupation number describe the response of the electron gas, and these do not
need to be regularized. In the following, the vacuum terms are neglected in deriving
various forms of the response tensor for an electron gas. Formally, these various
forms also apply to the vacuum: from (9.1.1) it can be seen that response tensor
for an electron gas becomes the (unregularized) response tensor for the vacuum by
making the replacement n�q ! � 1

2
�. No physical significance is attached to this

replacement. It is used below to note various forms for the unregularized vacuum
response tensor whose regularization is discussed in � 8.1.

To illustrate the interpretation of the sums in (9.1.1), consider the contribution
from the terms with occupation number n�q . This includes electrons (� D 1) and
positrons (� D �1) in the state q, which denotes n; s; pz collectively. For electrons,
the contribution involves the electron absorbing and re-emitting (or emitting and re-
absorbing) a wave quantum, with the electron returning to the state q. The sums over
�; q are over all the electrons and positron states that are occupied, in the sense that
n�q is nonzero. Between the absorption and re-emission the electron or positron is in
a virtual state with quantum numbers q0. The sum over �0; q0 is over all possible
virtual states, which includes both virtual electron states (�0 D 1) and virtual
positron states (�0 D �1) irrespective of whether the real state �; q corresponds to
an electron or a positron. The Feynman diagrams Fig. 9.1b, c correspond to virtual
states with �0 D ˙�, respectively.
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The response tensor (9.1.1) may be written in a variety of alternative forms. One
form involves only n�q in the numerator. This form is obtained by rewriting the term
proportional to �0 through the relabeling �0; q0 ! �; q and �; q ! �00; q00. Neglecting
the vacuum response, (9.1.1) becomes

˘��.k/ D �e
3B

2


X
�;q

Z
dpz

2

�n�q

"X
�0 ;q0

�
� �0�
q0q .k/

���
� �0�
q0q .k/

���
! � �"q C �0"q0

�
X
�00 ;q00

�
� ��00

qq00 .k/
���
� ��00
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���

! � �00"q00 C �"q

#
; (9.1.2)

where �0p0
z D �pz � kz, �00p00

z D �pz C kz are implicit.
The dependence of the specific quantum numbers, q D n; s; pz can be made

explicit by writing n�q ! n�ns.pz/. The energy eigenstates, "q ! "n.pz/ D Œm2 C
p2z C 2neB�1=2, are independent of the spin, and it is convenient to use the notation

"n.pz/ ! "n; "n0.p0
z/ ! "0

n0 : (9.1.3)

For a spin-independent electron gas, the occupation numbers for s D ˙1 are equal,
and are written as n�n.pz/.

Explicit expressions for the vertex function in (9.1.1) depend on the choice of
spin operator. As discussed in � 5.4, the choice of the magnetic-moment operator is
the most appropriate, leading to the form (5.4.18), viz.
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; (9.1.4)

with x D k2?=2eB , and P˙ D 1
2
.1C P/˙ 1

2
.1 � P/, P D pz=jpzj.
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9.1.3 Summed Form of ˘ ��.k/

The sums over s; s0 and �; �0 in (9.1.2) can be performed explicitly for an arbitrary
distribution. The dependence on s; s0 and �; �0 is explicit except for the occupation
number, n�n;s.pz/. The occupation number may be separated into parts that are even
and odd under s ! �s and � ! ��; this separates n�n;s.pz/ into four terms,
proportional to 1; s; �; s�, respectively, times averages over s and �. For a spin-
independent distribution there is no dependence on s, and the terms proportional
to 1 and � are half the sum and difference, respectively, between the occupation
numbers for electrons and positrons. The effect of spin-dependence, in n�n;s.pz/, is
discussed in � 9.6.

Sum over s; s0

In a spin-independent electron gas, the sums over s0; s in (9.1.1) define the tensor
(5.4.23), viz.

�
Cn0n.�

0p0
k; �pk; k/

��� D 2�0�"0
n0"n

X
s0;s

Œ� �0�
q0q .k/�

�Œ� �0�
q0q .k/�

��: (9.1.5)

Explicit forms for the tensor are given in (5.4.24) and in Table 5.1.
The response tensor (9.1.1) for a spin-independent electron gas becomes
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with P 0�
k D Œ�0"0

n0; 0; 0; �pz � kz�, P
�

k D Œ�"n; 0; 0; �pz� in the first integral, and

P
0�
k D Œ�0"0

n0 ; 0; 0; �
0p0

z�, P
�

k D Œ�"n; 0; 0; �
0p0

z C kz� in the second integral. The
symmetry property (5.4.24) allows one to make the interchange �0; n0; p0

z $ �; n; pz,
so that the second integral in (9.1.6) can be written in terms of a pz-integral over the
occupation number n�n.pz/ and combined with the first integral.

Sum over �0 or �

The sums over �0 and � can be performed for the terms in (9.1.6) proportional to
n�n.pz/ and n�

0

n0.p
0
z/, respectively. The remaining sum (over � and �0, respectively)

can be performed after separating into the parts even and odd in the interchange of
electrons and positrons.
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The sums over �0; � in the two terms, respectively, in (9.1.6) give

X
�0

�0�Cn0n.�
0p0

k; �pk; k/
���

2"0
n0"n.! � �"n C �0"0

n0/
D �

�
Cn0n.�pk � kk; �pk; k/

���
"nŒ.! � �"n/2 � "02

n0�
;

X
�

�
�
Cn0n.�

0p0
k; �pk; k/

���
2"0

n0"n.! � �"n C �0"0
n0/

D
�
Cn0n.�

0p0
k; �

0p0
k C kk; k/

���
"0
n0Œ.! C �0"0

n0/2 � "2n�
: (9.1.7)

The denominators on the right hand sides of (9.1.7) can be written

.! � �"n/
2 � "02

n0 D �2Œ�.pk/k � .pk/nn0 �;

.! C �0"0
n0/

2 � "2n D 2Œ�0.p0k/k C .pk/n0n�; (9.1.8)

respectively, with .pk/k D "n! � pzkz, .p0k/k D "0
n0! � p0

zkz, and with

.pk/nn0 D .k2/kfnn0 D 1
2
.k2/k C 1

2
p2n � 1

2
p2n0 : (9.1.9)

The form (9.1.6) for the response tensor then becomes

˘��.k/ D �e
3B

2


X
n;n0

"Z
dpz

2


X
�

n�n.pz/

�
Cn0n.�pk � kk; �pk; k/

���
2"nŒ�.pk/k � .pk/nn0 �

�
Z
dp0

z

2


X
�0

n�
0

n0.p
0
z/

�
Cn0n.�

0p0
k; �

0p0
k C kk; k/

���
2"0

n0Œ�0.p0k/k C .pk/n0n�

#
:

(9.1.10)

An alternative derivation of the hermitian part starts from the form (9.1.2), rather
than from (9.1.1). After summing over the spins, in place of (9.1.6), this gives

˘��.k/ D �e
3B

2


X
�;n

Z
dpz

2

n�n.pz/

( X
�0 ;n0

�0�Cn0n.�
0p0

k; �pk; k/
���

2"0
n0"n.! � �"n C �0"0

n0/

�
X
�00 ;n00

�00�Cnn00.�pk; �00p00
k ; k/

���
2"n"

00
n00.! � �00"00

n00 C �"n/

)
;

(9.1.11)

with �00p00�
k D Œ�00"00

n00 ; 0; 0; �pz Ckz�, "00
n00 D "n00.�pz Ckz/. On performing the sums

over �0 and �00, and relabeling n00 as n0, (9.1.11) gives
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˘��.k/ D �e
3B

2


X
�;n;n0

Z
dpz

2


n�n.pz/

2"n

( �
Cn0n.�pk � kk; �pk; k/

���
�.pk/k � .pk/nn0

�
�
Cnn0.�pk; �pk C kk; k/

���
�.pk/k C .pk/nn0

)
: (9.1.12)

The results (9.1.10) and (9.1.12) are equivalent, as may be shown by interchanging
primed and unprimed quantities in the second integral in (9.1.10).

The second integrals in either (9.1.10) and (9.1.12) can be rewritten so that the
denominator is the same as in the first integral. This is achieved by making the
replacement � ! �� in the second term in (9.1.12). The two terms can then be
combined, but the significance of � as the sign of the charge is then lost. When this
procedure is used below, the sign � is relabeled as �.

9.1.4 Nongyrotropic and Gyrotropic Parts of ˘ ��.k/

The remaining sum in (9.1.12) that can be performed explicitly is that over �. To
make the dependence on � explicit, one separates the occupation number into the
sum and difference under the interchange of electrons and positrons, � ! ��. This
is achieved by writing

n�n.pz/ D 1
2

�
nsum
n .pz/C �ndiff

n .pz/
�
: (9.1.13)

This is equivalent to separating the response tensor into two parts, referred to here
as the nongyrotropic and gyrotropic parts, respectively. The nongyrotropic part is
independent of the sign of the charge, so that electrons and positrons contribute
to it with the same sign, and the gyrotropic part depends on the sign of the
charge, so that electrons and positrons contribute to it with the opposite sign. For
an appropriate choice of basis vectors, ˘��.k/ separates into nongyrotropic and
gyrotropic components which satisfy different symmetry relations, as implied by
the Onsager relations.

Onsager Relations

The Onsager relations, cf. � 1.4 of volume 1, imply relations between components
of the response tensor under the transformation B ! �B, which is equivalent to
changing the sense of gyration of particles, and hence to changing the sign of the
charge. A relevant form of the Onsager relations is

˘00.!;�k/ j�B D ˘00.!;k/ jB ; ˘0i .!;�k/ j�B D �˘i0.!;k/ jB ;
˘ij .!;�k/ j�B D ˘ji.!;k/ jB : (9.1.14)
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With B along the 3-axis, and with k defining the vector e�1 D Œ0;k?=k?� and
with e�2 D �f ��e1� D Œ0;kG=k?�, the gyrotropic terms are the 02-, 12- and 23-
components, and their negatives, the 20-, 21- and 32-components, respectively. The
remaining terms are the nongryotropic terms. The nongryotropic and gyrotropic
parts of the ˘��.k/ are symmetric and antisymmetric, respectively.

Summed Form of ˘ ��.k/

The nongyrotropic and gyrotropic parts are identified as those proportional to
nsum
n .pz/ and ndiff

n .pz/, respectively, in

n�n.pz/
�
Cn0n.�pk � kk; �pk; k/

��� C n��
n .pz/

�
Cnn0.��pk;��pk C kk; k/

���

D nsum
n .pz/

�
Nn0n.�pk; k/

��� C �ndiff
n .pz/

�
Gn0n.�pk; k/

���
: (9.1.15)

This definition corresponds to

�
Cn0n.�pk � kk; �pk; k/

��� D �
Nn0n.�pk; k/

��� C �
Gn0n.�pk; k/

���
;

�
Cnn0.��pk;��pk C kk; k/

��� D �
Nn0n.�pk; k/

��� � �
Gn0n.�pk; k/

���
: (9.1.16)

Explicit expressions for these two parts follow by inspection of the expression
(5.4.24) for

�
Cn0n.P

0
k; Pk; k/

���
. The nongyrotropic part is

�
Nn0n.�pk; k/
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��
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�nJ
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�nC1

�
;

(9.1.17)

and the gyrotropic part is

ŒGn0n.�pk; k/�
�� D iff ��Œp2n � �.pk/k�C �.p

�

k
k�G � p�

k
k
�
G/
��
.J n�1
n0

�nC1/
2 � .J nn0

�n�1/
2
�

�ipn
˚
.2�p

�

k
� k

�

k
/e�2 � .2�p�

k
� k�

k
/e
�
2

��
J n�1
n0

�nJ
n
n0

�n�1 � J nn0
�nJ

n�1
n0

�nC1

�
;

(9.1.18)

where one has k�? D k?e�1 , k�G D k?e�2 .

Sum over 	

In the resulting expression for the response tensor, the sign � has lost its meaning as
a label for electrons and positrons, and it is convenient to relabel it as � D ˙1. With
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this change, the summed form of ˘��.k/ becomes

˘��.k/ D � e3B

8
2

X
�;n;n0

Z
dpz

"n

1

�.pk/k � .pk/nn0

� ˚
nsum
n .pz/

�
Nn0n.�pk; k/

��� C �ndiff
n .pz/

�
Gn0n.�pk; k/

����
: (9.1.19)

All the dependence on � in (9.1.19) is explicit, allowing the sum over � to be
performed, giving

˘��.k/ D �e
3B

8
2

X
n;n0

Z
dpz

"n

�
Bnn0.pk; k/

���
.pk/2k � .pk/2nn0

; (9.1.20)

with the tensor in the numerator given by

ŒBnn0.pk; k/��� D
X
�D˙1

Œ�.pk/k C .pk/nn0 �

�˚nsum
n .pz/

�
Nn0n.�pk; k/

��� C �ndiff
n .pz/

�
Gn0n.�pk; k/

����
:

(9.1.21)

The remaining sums in (9.1.20) are over n0; n, and cannot be performed explicitly
in general.

Further evaluation of (9.1.20) or (9.1.21) involves performing the integral over
pz, which can be expressed in terms of a relativistic plasma dispersion function
(RPDF) for given nsum

n .pz/ or ndiff
n .pz/. One complication is the dependence on pz in

the numerator. Some progress in removing this dependence is made by writing pk D
Œ.pk/kk� � .pk/Dk

�
D�=.k

2/k, and replacing .pk/k everywhere in the numerator
by its resonant value .pk/nn0 , with the extra nondispersive terms being evaluated
separately. However, the terms involving .pk/D D "nkz �pz! cannot be eliminated
in any obvious way. An alternative way of evaluating the pz-integral in terms of
RPDFs is developed in � 9.2.

9.1.5 Response Tensor: Ritus Method

For a spin-independent electron gas, the Ritus method results in an expression for
˘��.k/ that has some analogies to the corresponding result in the unmagnetized
case, which is given in Eq. (8.1.2) of volume 1. The result for the unmagnetized
case can be written in the form

˘��.k/ D ie2
Z

d4P

.2
/4
d4P 0

.2
/4
.2
/4.P 0 �PCk/Tr Œ�� NG.P /�� NG.P 0/�; (9.1.22)
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where the statistical average of the propagator,G.P / D .=P Cm/=.P 2 �m2 C i0/,
can be written

NG.P / D
X
�D˙1

�=p Cm

2�"

�
℘ 1

E � �"
� i�Œ1 � 2n�.p/�
ı.E � �"/

�
; (9.1.23)

with E D P0 and =p D �0" � γ � p.
The form of the response tensor implied by the Ritus method for the magnetized

case is analogous to (9.1.22) in that it can be written as

˘��.k/ D
X
n0;n

ie3B

2


Z
dE

2


dE 0

2

2
.E 0 � E C !/

Z
dPz

2


dP 0
z

2

2
ı.P 0

z � Pz C kz/

� Tr
�
J �

n0n
.k?/ NGn.E;Pz/J �

nn0.�k?/ NGn0.E 0; P 0
z /
�
; (9.1.24)

where the statistical average of the propagatorGn.E;Pz/ D .=Pn Cm/=.E2 � "2n/ is
given by

NGn.E;Pz/ D
X
�D˙1

=P �
n Cm

2�"n

�
℘ 1

E��"n � i�Œ1�2n�n.pz/�
ı.E��"n/
�
; (9.1.25)

withPz D �pz, =P �
n D �0�"n��2pn��3�pz. The vertex function in the unmagnetized

case is replaced, in the magnetized case, by (5.5.26), viz.

J �

n0n.k?/ D .�ie�i /n0�n˚�J n�1
n0�n.x/PC C J nn0�n.x/P�

�
�
�

k
C� � ie�i J n�1

n0�nC1.x/P� C iei J nn0�n�1.x/PC
�
�
�

?
�
: (9.1.26)

Further evaluation of the response tensor in the form (9.1.24) involves taking
the trace over the Dirac matrices. The result is the same as that derived above by
summing over the spins directly. The direct method has the advantage that it can
also be applied to a spin-dependent electron gas (� 9.6), whereas the Ritus method
applies only to a spin-independent electron gas.

9.1.6 Neglect of Quantum Effects

Reduction of the relativistic quantum form for the response tensor to the non-
quantum limit involves identifying the quantum effects and then neglecting them.
Several independent approximations need to be made in neglecting quantum effects,
and these can be made in different orders, leading to various intermediate (partly
quantum) approximate forms. The specific approximations that need to be made
are the large-n limit, the Bessel-function approximation to the J -functions, the
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neglect of the quantum recoil, the neglect of the spin, and the neglect of dispersion
associated with pair creation.

Large-n limit: The large-n limit corresponds to cases where the important con-
tribution to the response tensor is due to electrons in Landau states, n 	 1. The
explicit assumption is that n and n0 are large, with n�n0 much smaller than either. In
the large-n limit motion perpendicular to the magnetic field is quasi-classical, with
„n ! p2?=2eB , corresponding to pn ! p?. Thus the ratio a=n D .n�n0/eB„=p2?
is first order in „. The sum over n0 for fixed n is replaced by a sum over a D n� n0.
The number a is identified as the harmonic number in a classical treatment. The sum
over n in any specific form of the response tensor is replaced by an integral over p?,
specifically, by the integral over dp?p?=eB„. The occupation number, n�n.pz/, is
reinterpreted as a quasi-classical occupation number, n�.p?; pz/, that is a function
of the continuous variable p? D .2neB„/1=2.
Bessel-function approximation: In the large-n limit, the J -functions can be
expanded in Bessel functions. In the nonquantum limit only the leading term is
retained in this expansion, which gives J nn�n0.x/ D Ja.z/, with a D n � n0, and
where the relation between the arguments x D „k2?=2eB and z D k?p?=eB
involves n through p? D .2neB„/1=2. Quantum corrections to this leading term
are included in (A.1.54)–(A.1.56).

Retaining only the leading terms in „ gives the approximations (6.1.11) and
(6.1.12), viz.

Œ� ��
q0q�

� D .iei /�a

�
U �.a; k/;

�
Nn0n.�pk; k/

��� C �
Gn0n.�pk; k/

��� D 4m2U�.a; k/U ��.a; k/; (9.1.27)

with a D n � n0, where U�.a; k/ is given by (2.1.28) with (2.1.29), and where
the Lorentz factor is interpreted as � D "n=mc

2 with "2n D m2c4 C p2nc
2 C p2z c

2,
pn D p?. Note that the sign � is implicit on the right hand side of (9.1.27), and
appears explicitly in (2.1.29).

Quantum recoil: The resonant denominator in the classical case is .ku/k � a˝0.
The denominators that appear in the general form (9.1.12) are �.pk/k ˙ .pk/nn0 ,
which may be rewritten using

.pk/k D "n! � pzkz ! m.ku/k; .pk/nn0 D aeB C 1
2
„.k2/k; (9.1.28)

with "n ! �mc2 in the large-n limit. The term 1
2
„.k2/k is identified as the quantum

recoil, and it is neglected in the resonant denominator in the nonquantum limit. With
this neglect, �.pk/k ˙ .pk/nn0 reproduces the classical resonant denominator in the
large-n limit. The sum over n0 D n � a for fixed n in the quantum case can be
written as a sum over a, the restriction n0 � 0 on a is ignored in the nonquantum
limit, and the sum is extended to �1 < a < 1.
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Spin: Spin can be neglected in two different ways in a relativistic quantum
treatment. The procedure used here is to include the spin, by using Dirac’s equation,
and assume the occupation number is independent of spin, and average over the spin
states. The other procedure is to assume scalar particles, described by the Klein–
Gordon equation rather than the Dirac equation, so that the spin is identically zero.
These procedures lead to different results for ˘��.k/, with the difference being
of order „2. Spin is an intrinsically quantum effect and, even in a spin-dependent
electron gas, the spin introduces a correction of order „ to the response tensor. There
is a context in which the spin cannot be neglected: when the magnetic properties of
materials are important: paramagnetism and ferromagnetism are directly related to
the spin of the electron. Spin-dependent plasmas are discussed in � 9.6.

One-photon pair creation: Dispersion due to one-photon pair creation, which
has no nonquantum counterpart, corresponds to the denominator in (9.1.1) with
�0 D ��, specifically, „! ˙ ."q C "q0/. The nonquantum limit for these terms
corresponds „! ! 0. Although these terms do not contribute to the dispersion
in the nonquantum limit, they need to be retained to reproduce the nondispersive
part correctly.

9.1.7 Nonquantum Limit of ˘ ��.k/

In Chap. 2, the response tensor in the nonquantum limit is derived in two different
ways, referred to as the forward-scattering and Vlasov methods, leading to the
superficially different forms (2.3.10) and (2.3.29), respectively. It is of interest to
derive both these forms from the relativistic quantum form for the response tensor.

Forward-Scattering Form

The form (9.1.19) for the response tensor reproduces the forward-scattering form
(2.3.10) in the nonquantum limit. The reduction of (9.1.19) to this limit involves
neglecting the quantum recoil term, taking the limits „ ! 0, n ! 1, and
making the replacement „n ! p2?=2eB . The vertex functions are replaced by their
nonquantum counterparts through (9.1.27). Only the contribution of the electrons
needs to be considered explicitly, with positrons contributing with the same sign
to the nongyrotropic part and with the opposite sign to the gyrotropic part. The
derivation is straightforward, and reproduces (2.3.10) in the form

˘��.k/ D �e2
X
a

Z
d3p

.2
/3
n.p?; pz/

"

(
g
��

k J
2
a � k

�

kU
��.a; k/C k�kU

�.a; k/

.ku/k � a˝0

Ja

C .k2/kU�.a; k/U ��.a; k/
Œ.ku/k � a˝0�2
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��.a; k/ � k�GU
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.ku/k � a˝0
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��
; (9.1.29)

with Ja D Ja.k?u?=˝0/ and with N� D ndiff.p/=nsum.p/ ranging between N� D 1

for an electron gas to N� D �1 for a positron gas.

Vlasov Form

The reduction of (9.1.1), with � D �0 D 1, to its nonquantum counterpart in
the Vlasov form (2.3.29) involves the following steps. First, take the large-n limit
and replace the vertex functions by their nonquantum counterparts using (9.1.27).
Second, replace the resonant denominator by its nonquantum counterpart, by
neglecting the quantum recoil. Third, expand the difference between the occupation
numbers in (9.1.1) using the differential operator OD, introduced in (6.1.8). One has

nC
n0.p

0
z/ D nC

n�a.pz � kz/ D
�
1 � OD C 1

2
OD2 C � � �

	
nC
n .pz/: (9.1.30)

Only up to first order is retained in (9.1.30). Then nC
n .pz/ is replaced by the classical

distribution function, nC
n .pz/ ! nC.p?; pz/. A related step is to replace the sum

over n by the integral over dp? p?=eB . The occupation number, nC.p?; pz/, is
proportional to the classical distribution function. The constant of proportionality is
identified by noting that the number density of electrons is

nC D 4


Z 1

0

dp? p?
.2
„/2

Z 1

�1
dpz

2
„ n
C.p?; pz/ D

Z
d4p

.2
„/4 �F.p/; (9.1.31)

where a factor 2 arises from the sum over spins (an D 2). The sum over n0 is
replaced by a sum over a, and nC

n .pz/ is rewritten as nC.p?; pz/. This gives

nC
n .pz/� nC

n0.p
0
z/ D „

�
aeB

p?
@

@p?
C kz

@

@pz

�
nC.p?; pz/: (9.1.32)

The resulting approximation to the response tensor reproduces the term involving
the sum over harmonic number in (2.3.29) which, when rewritten in the notation
used in this section, becomes
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(9.1.33)

with u�k D p
�

k =m.

9.2 Relativistic Plasma Dispersion Functions

The response tensor for a relativistic magnetized quantum electron gas involves only
one integral, over pz, and this integral can be written in terms of a single relativistic
plasma dispersion function (RPDF). The RPDF chosen here, denoted as Z�

n.t0/,
depends on the occupation number n�n.pz/, which is arbitrary. Some explicit forms
for Z�

n.t0/ are evaluated in � 9.3 for thermal distributions.

9.2.1 Dispersion-Integral Method

A method used by Toll [21] to calculate the regularized form of the vacuum
polarization tensor (� 8.1.5) has a counterpart for an electron gas. The idea is to
calculate the dissipative part of the response and relate the dispersive part to it
through a dispersion integral, which is a Kramers–Kronig relation in the present
context. This idea was used by Silin [17] to calculate the response tensor for an
isotropic relativistic quantum electron gas (� 4.4.4 of volume 1). In the wider context
of quantum field theory, the same idea was introduced by Cutkovsky [4], and it
is referred to here as the dispersion-integral method. In the present context, the
idea that underlies these methods is that one can construct the hermitian part of
the response tensor from the antihermitian part, and that one can calculate the
antihermitian part by considering only resonant interactions, as in the evaluation
of the absorption coefficient for gyromagnetic absorption (6.1.36) and one-photon
pair creation (6.4.3).

Antihermitian Part of the Response Tensor

A general form for the antihermitian part of the response tensor may be derived
from (9.1.1). Using the Plemelj formula (2.1.17), one finds
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˘A��.k/ D i
 e3B
2


X
�;q;�0 ;q0

Z
dpz

2


h
1
2
.�0 � �/C �n�q � �0n�0

q0

i

��� �0�
q0q .k/

���
� ��0

qq0 .�k/
��
ı.! � �"q C �0"q0/: (9.2.1)

The sum over �, �0 involves four terms. The term � D �0 D 1 is associated with
gyromagnetic absorption by electrons. In this case the primed state is identified as
the electron state before absorption, and the unprimed state as the electron state
after absorption. The term � D �0 D �1 is associated with gyromagnetic absorption
by positrons, with the unprimed state the initial state and the primed state the final
state in this case. The terms � ¤ �0 are associated with dispersion due to one-
photon pair creation. One-photon pair creation exists in the vacuum, and the terms
in (9.2.1) that are independent of the occupation numbers give the antihermitian part
of the vacuum response tensor. The presence of electrons or positrons suppresses the
vacuum contribution. Specifically, for � D ��0 D ˙1 the factor in square brackets
is �Œ1� nC

q � n�
q0 �, and it implies that one-photon pair creation is suppressed when

the state into which the electron or the positron would be created is occupied, in
accord with the Pauli exclusion principle.

The antihermitian part of the response tensor (9.2.1) becomes, for a spin-
independent electron gas,

˘A��.k/ D i

e3B

4
2

X
�;n;�0 ;n0;˙

1
2
.�0 � �/C �n�n.�p

˙
nn0/� �0n�0

n0.�
0p0

z˙/
2.!2 � k2z / gnn0

��Cn0n.p
0
k˙; pk˙; k/

���
; (9.2.2)

with the resonant values given by (6.1.16)–(6.1.18). Including „ and c explicitly,
one has (ordinary units)

p˙
nn0 D „kzfnn0 ˙ „!gnn0=c; "˙

nn0 D „!fnn0 ˙ „kzcgnn0 ;

fnn0 D ."0n/
2 � ."0n0/

2 C „2.!2 � k2z c
2/

2„2.!2 � k2z c2/
;

g2nn0 D
�„2.!2 � k2z c

2/ � ."0n � "0n0/
2
��„2.!2 � k2z c2/ � ."0n C "0n0/

2
�

Œ2„2.!2 � k2z c
2/�2

:

(9.2.3)

The resonant values can be expressed in terms of the 4-vector p
�

k˙ D
."ṅn0=c; 0; 0; pṅn0/ with

p
�

k˙ D „.k�k fnn0 ˙ k
�
Dgnn0/; p

0�
k˙ D p

�

k˙ � „k�k ; (9.2.4)
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with k�k D .!=c; 0; 0; kz/, k
�
D D .kz; 0; 0; !=c/. The ˙ subscripts of the vertex

functions in (9.2.1) indicate that they are to be evaluated at these resonant values.

Kramers–Kronig Relations

The Kramers–Kronig relations follow from the requirement that the response be
causal, which implies

˘��.!;k/ D i

Z 1

�1
d!0

2


˘��.!0;k/
! � !0 C i0

: (9.2.5)

The causal condition imposed in deriving (9.2.5) expresses the requirement that
cause precede effect. A stronger condition is that this must apply in all inertial
frames. In the magnetized case, only Lorentz transformations along the direction of
the magnetic field are relevant. The stronger condition then corresponds to (9.2.5)
being replaced by

˘��.!;k?; kz/ D i

Z 1

�1
d!0

2


˘��.!0;k?; kz C ˇ0Œ! � !0�/
! � !0 C i0

; (9.2.6)

which applies for all ˇ20 < 1. The stronger condition (9.2.6) has various implications
but these have not been used in plasma dispersion theory. An example is the identity
found by differentiating (9.2.6) with respect to ˇ0 and setting ˇ0 D 0. This implies
that the !-integral of @˘��.k/=@kz is zero.

The Kramers–Kronig relations follow from (9.2.5) by separating into hermitian
and antihermitian parts, which are related by a Hilbert transform. The hermitian part
of (9.2.5) gives

˘H��.!;k/ D ˘
��
ND.!;k/ � i



℘
Z 1

�1
d!0

!0 � ! ˘
A��.!0;k/; (9.2.7)

where there is an undetermined nondispersive part, ˘��
ND.!;k/, whose Hilbert

transform is zero. Use of (9.2.7) is the basis for one method of regularizing
the vacuum polarization tensor [21]: first evaluate the integrals in the vacuum
contribution in (9.2.1), and then insert this into (9.2.7) to find the hermitian part
of the vacuum response tensor.

The relation (9.2.5) implies that the dispersive part of the response, described by
˘H��.!;k/, can be determined from the resonant part, described by ˘A��.!;k/.
On inserting the antihermitian part (9.2.1) into (9.2.7), the dependence of
˘A��.!0;k/ on !0 is through the dependence on pṅn0 on ! ! !0. The integral over
!0 in (9.2.7) may be rewritten as an integral over pz, with a resonant denominator
pz � pṅn0 , suggesting a form



9.2 Relativistic Plasma Dispersion Functions 409

˘H��.!;k/ D ˘
��
ND.!;k/�

X
˙

i



℘
Z 1

�1
dpz

pz � pṅn0

˘A��.pz;k/; (9.2.8)

with ˘A��.pz;k/; given by (9.2.1). As in Silin’s method (� 4.4.4 of volume 1), the
nondispersive (ND) part is undetermined by (9.2.8), and the only general constraints
on it are that it involve only functions whose Hilbert transform is zero, and that it
satisfy the charge-continuity and gauge-invariance conditions.

9.2.2 Evaluation of Dispersion Integrals

The foregoing arguments suggest that the dispersive part of the response tensor can
be expressed in a form in which the numerator is evaluated at the resonant values and
taken outside the integral over pz, which then corresponds to a RPDF. The following
systematic procedure leads to this result.

Rationalized Resonant Denominator

Before any sums are performed, there are four resonant denominators in the
response tensor (9.1.1), specifically, ! � �"n C �0"0

n0 with �; �0 D ˙1. The product
of all four resonant denominators is a quadratic function of pz:

1

D.!; "n; "
0
n0/

D � 1

4.k2/k.�pz � pC
nn0/.�pz � p�

nn0/
; (9.2.9)

with D.!; "n; "0
n0/ defined by (6.1.13).

After rationalizing the denominator in this way, the response tensor in the form
(9.1.19) gives

˘��.k/ D e3B

16
2.k2/k

X
�;n;n0

Z
dpz

"n

�."n! C pzkz/C .pk/nn0

.�pz � pC
nn0/.�pz � p�

nn0/

�˚nsum
n .pz/

�
Nn0n.�pk; k/

��� C �ndiff
n .pz/

�
Gn0n.�pk; k/

����
; (9.2.10)

with p˙
nn0 implicit functions of n0; n through (9.2.3) and with .pk/nn0 D 1

2
.k2/k C

1
2
p2n � 1

2
p2n0 . The sign � is relabeled as �.

The denominator in (9.2.10) can be written as a sum of two denominators with
poles at �pz D pṅn0 :

1

.�pz � pC
nn0/.�pz � p�

nn0/
D 1

2!gnn0

X
˙

˙1
�pz � pṅn0

: (9.2.11)
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This reduces the pz-integral to a standard dispersive form with a resonant denomi-
nator �pz � pṅn0 . The response tensor (9.2.10) involves sums over two independent
signs: � D ˙1 and the ˙ in the sum in (9.2.11).

Reduction to a Single Dispersive Integral

All the integrals that appear in the response tensor (9.2.10) with (9.2.11) can be
evaluated in terms of a single dispersive function, written here as K�

n.�pk˙/, with
the argument denoting dependence on p�k˙ D ."ṅn0; 0; 0; pṅn0/, given by (9.2.4).
The single dispersive integral is defined by writing

Z
dpz

n�n.pz/

"n

�."n! C pzkz/C .pk/nn0

.�pz � pC
nn0/.�pz � p�

nn0/
D 1

2gnn0

X
˙

˙K�
n.�pk˙/; (9.2.12)

K�
n.�pk˙/ D

Z
dpz

n�n.pz/

"n

�"n C "ṅn0

�pz � p˙
nn0

: (9.2.13)

The pz-integral in the response tensor (9.2.10) with (9.2.11) includes the integral
(9.2.12) and integrals of the form (9.2.12) with additional terms, �p�k and p�k p

�
k in

the integrand. Omitting the superscript � on n�n.pz/, the integrals reduce to

H
.a;b/

nn0 D
Z
dpz

nn.pz/

"n

�."n! C pzkz/C .!2 � k2z /fnn0

.�pz � pC
nn0/.�pz � p�

nn0/
.�"n/

a.�pz/
b; (9.2.14)

which may be evaluated in terms of (9.2.13) with additional nondispersive contri-
butions:

H
.a;b/

nn0 D �
H
.a;b/

nn0

�
ND C 1

2gnn0

X
˙

˙Kn.�pk˙/."ṅn0/
a.pṅn0/

b: (9.2.15)

The response tensor (9.2.10) with (9.2.11) reduces to

˘��.k/ D ˘
��
ND.k/C e3B

32
2.k2/kgnn0

X
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���
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; (9.2.16)

where˘��
ND.k/ is the nondispersive part, and with

"
Ksum
n .�pk˙/

Kdiff
n .�pk˙/

#
D
"
KC
n .�pk˙/CK�

n .�pk˙/
KC
n .�pk˙/�K�

n .�pk˙/

#
: (9.2.17)
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The result (9.2.16) with (9.2.17) achieves the objective of writing the response
tensor in a form in which the numerator is evaluated at the resonant values and taken
outside the integral, leaving a pz-integral that defines a RPDF, plus a nondispersive
part that can be identified explicitly.

9.2.3 Nondispersive Part

The nondispersive (ND) part,˘��
ND.k/, results from terms in the numerator of the pz-

integral that cancel with the resonant denominator. The ND terms in the response
tensor arise from the ND terms in integrals of the form (9.2.14) with a; b D 0; 1; 2.
However, note that the ND part is not uniquely defined: formally, it is defined only
by the requirement that its Hilbert transform be zero. It follows that the explicit
form of the ND part can depend on the definition of the RPDF. The ND part in
(9.2.17) applies specifically to the RPDF defined by (9.2.13). Additional ND terms
may appear on introducing a different RPDF.

Explicit evaluation of the ND terms in (9.2.15) gives

�
H
.a;b/

nn0

�
ND D

Z
dpz

nn.pz/

"n
h
.a;b/

nn0 ;

h
.0;0/

nn0 D 0; h
.1;0/

nn0 D !; h
.0;1/

nn0 D kz; h
.1;1/

nn0 D �."nkz C pz!/C 2!kz fnn0 ;

h
.0;2/

nn0 D h
.2;0/

nn0 D �."n! C pzkz/C .!2 C k2z /fnn0 : (9.2.18)

On inserting these expressions into (9.2.10), the sum over � D ˙1 gives zero for
terms in the integrand proportional to �, and only the terms independent of � in
(9.2.18) contribute to the ND part of the response tensor.

For the ND terms, the sum over n0 may be performed explicitly. The relevant
sums over the J -functions were derived by Sokolov and Ternov [18], and are written
down in (A.1.42):

1X
n0D0

J n
0

n�n0.x/J
n0

n00�n0.x/ D ınn00 ;

1X
n0D0

.n0 � n/ŒJ n0

n�n0.x/�
2 D x; (9.2.19)

The resulting sum over n is proportional to the proper number density,

Nnpr D
X
�D˙

X
nD0

n�npr; (9.2.20)
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where the proper number density in the nth Landau state is

n�npr D eBm

2
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The resulting expression is [11]
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; (9.2.22)

with Nnpr the sum of the proper number densities for electrons and positrons. The ND
part (9.2.22) applies specifically for the RPDF (9.2.13), and it is of little physical
interest in itself.

9.2.4 Plasma Dispersion Function Z�
n.t0/

The dispersive part of the response tensor, (9.2.16), involves the RPDF K�
n.�pk˙/,

given by (9.2.13). The following steps allow this to be re-expressed in terms of a
more convenient RPDF, denoted Z�

n.t0/.

Evaluation of Dispersion Integrals

Evaluation of the pz-integral in (9.2.13) is complicated by the square-root depen-
dence that appears in "n D Œ."0n/

2 C p2z �
1=2, with "0n D .m2 C p2n/

1=2. One may
eliminate square roots and evaluate the integral by rewriting the pz-integral in terms
of a variable t defined by

pz

"0n
D 2t

1 � t2
;

"n

"0n
D 1C t2

1 � t2 ; dpz D 2"0ndt
1C t2

.1 � t2/2 : (9.2.23)

The resonant values �pz D pṅn0 may be written

pṅn0 D "0n
2t˙nn0

1 � Œt˙nn0 �2
; "ṅn0 D "0n

1C Œt˙nn0 �
2

1 � Œt˙nn0 �2
; (9.2.24)

where �t D t˙
nn0 is one of the solutions of the quadratic equation 2�t=.1 � t2/ D

p˙
nn0="

0
n. The two solutions are �t D t˙

nn0 ;�1=t˙nn0 , with

t˙nn0 D "˙
nn0 � "0n

pṅn0

; � 1

tṅn0

D �"
˙
nn0 C "0n

pṅn0

: (9.2.25)
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The combination that appears in the integrand in (9.2.10) with (9.2.11) becomes

�."n! C pzkz/C .pk/nn0

.�pz � pC
nn0/.�pz � p�

nn0/
D
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˙
˙ 1

pC
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"
�"n C "˙

nn0

�pz � pṅn0

C kz

#
; (9.2.26)

with the final term inside the square brackets summing to zero. On rewriting the
integral in (9.2.13) in terms of t one finds

K�
n.�pk˙/ D

Z
dt n�n.pz/

"
2t

1 � t2 C �C 1

�t � t˙nn0

C � � 1
�t C 1=t˙nn0

#
: (9.2.27)

The dispersive contribution arises from the resonances, with that at t D t˙nn0

associated with � D C1, and that at t D �1=t˙nn0 associated with � D �1. The
term involving 2t=.1� t2/ in (9.2.27) gives a nondispersive (ND) contribution, and
there are analogous ND terms when additional powers of "n and pz are included in
the integrand.

Definition of Z�
n.t0/

It follows from (9.2.27) that the dispersive contribution can be evaluated in terms of
a RPDF defined by

Z�
n.t0/ D

Z 1

�1
dt
n�n.pz/

t � t0
; �Z�

n.�t0/ D
Z 1

�1
dt
n�n.pz/

�t � t0 ; (9.2.28)

where the second form is equivalent to the first. The resonances in (9.2.27)
correspond to t0 D tṅn0 ;�1=tṅn0 , and it follows from (9.2.27) that the RPDF (9.2.28)
appears with all four arguments. The dispersive part of (9.2.27) becomes

K�
n.�pk˙/ D .�C 1/Z�

n.t
˙
nn0/� .� � 1/Z�

n.1=t
˙
nn0/: (9.2.29)

The dispersive part of (9.2.15) becomes

H
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nn0 D 1

2gnn0

X
˙

˙ �
.�C1/Z�

n.t
˙
nn0/�.��1/Z�

n.1=t
˙
nn0/

�
."˙
nn0/

a.p˙
nn0/

b: (9.2.30)

This confirms the result, suggested in (9.2.8) based on the causal condition, that
the terms in the numerator that involve powers of "n and pz can be evaluated at the
resonant values and taken outside the dispersion integral, in evaluating the dispersive
part.

The combinations of electron and positron contributions appear in the response
tensor through
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"
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#
: (9.2.31)

The dependence on the sign � is now explicit, and the sum over � gives
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:

(9.2.32)

It follows that the upper combination appears in the nongyrotropic part,
which involves Z sum

n .t0/, and the lower combination appears in the gyrotropic
part, which involves Zdiff

n .t0/.

9.2.5 RPDF Form of ˘ ��.k/

The expression for the response tensor that results from (9.2.16) is referred to as the
RPDF form of ˘��.k/. The resulting form is
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To perform the sum over ˙ one needs to separate the tensors into contributions that
are even and odd, by writing
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Explicit forms for the tensors defined by (9.2.34) follow by inserting �p�k ! p
�

k˙,
given by (9.2.4), into (9.1.17) and (9.1.18). This gives
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�
Dk

�
G � k�Dk�G/

�
.J n�1
n0�nC1/2 � .J nn0�n�1/2

��
: (9.2.35)

The term involving g2nn0 can be rewritten in terms of f 2
nn0 using

g2nn0 D f 2
nn0 � ."0n/

2

!2 � k2z
: (9.2.36)

The tensors (9.2.35) apply for g2
nn0 > 0; for g2

nn0 < 0, corresponding to
the dissipation-free region where the resonance is not allowed, one makes the
replacement gnn0 ! ig0

nn0 with g02
nn0 D �g2

nn0 .

Four Combined RPDFs

Four different combinations of the RPDF appear. These are

2
66664

Z .1/

nn0.!; kz/

Z .2/

nn0.!; kz/

Z .3/

nn0.!; kz/

Z .4/

nn0.!; kz/

3
77775

D

2
666664

Z sum
n .tCnn0/C Z sum

n .1=tCnn0/� Z sum
n .t�nn0/� Z sum

n .1=t�nn0/

Z sum
n .tCnn0/C Z sum

n .1=tCnn0/C Z sum
n .t�nn0/C Z sum

n .1=t�nn0/

Zdiff
n .tCnn0/ � Zdiff

n .1=tCnn0/ � Zdiff
n .t�nn0/C Zdiff

n .1=t�nn0/

Zdiff
n .tC

nn0/ � Zdiff
n .1=tC

nn0/C Zdiff
n .t�

nn0/ � Zdiff
n .1=t�

nn0/

3
777775
:

(9.2.37)

The resulting general form for the response tensor for an arbitrary spin-independent
distribution is

˘��.k/ D ˘
��
ND.k/C e3B

8
2.k2/k

X
n;n0

1

gnn0

˚�
Nn0n.k/

���
C
Z.1/

nn0.!; kz/C �
Nn0n.k/

���
�
Z.2/

nn0.!; kz/

C�Gn0n.k/
���
C
Z.3/

nn0 .!; kz/C �
Gn0n.k/

���
�
Z.4/

nn0.!; kz/
�
: (9.2.38)
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The general form (9.2.38) with (9.2.35) applies when the resonances are allowed,
g2nn0 > 0, and the dissipation is then described by the antihermitian part that
arises form the imaginary parts of the RPDFs. In the dissipation-free region (for
given n; n0; .k2/k), gnn0 is imaginary, the ˙ solutions (pṅn0; "ṅn0 ; tṅn0) are complex
conjugates of each other, the RPDF has real and imaginary parts and the imaginary
contributions sum to zero, implying that the antihermitian part is zero, and that the
response tensor (9.2.38) with (9.2.35) is hermitian in the dissipation-free region.

9.2.6 Imaginary Parts of RPDFs

The antihermitian part of the form (9.2.38) for the response tensor includes all
dissipative processes (for gnn0 and hence t˙nn0 real). Dissipation is described by the
imaginary parts of the RPDFs obtained by imposing the Landau prescription; the
sign of the imaginary part needs to be deduced from the dependence of t˙nn0 on !.
The antihermitian part is evaluated in a more straightforward manner in (9.2.2),
and comparison of this result with the imaginary parts of the RPDFs allow one to
identify the signs of imaginary parts of the RPDFs indirectly. One finds

ImZ�
n.t

˙
nn0/ D i
 n�n.p

˙
nn0/; ImZ�

n.1=t
˙
nn0/ D i
 n�n.�p˙

nn0/: (9.2.39)

The result (9.2.39) also follows from the definition (9.2.28) of the RPDFs by writing
t˙nn0 ! t˙nn0 C i0 and using the Plemelj formula.

The imaginary parts of the RPDFs (9.2.37) become

2
66664

ImZ .1/

nn0.!; kz/

ImZ .2/

nn0.!; kz/

ImZ .3/

nn0.!; kz/

ImZ .4/

nn0.!; kz/

3
77775

D i


2
666664

nsum
n .pC

nn0/Cnsum
n .�pC

nn0/�nsum
n .p�

nn0/�nsum
n .�p�

nn0/

nsum
n .pC

nn0/Cnsum
n .�pC

nn0/Cnsum
n .p�

nn0/Cnsum
n .�p�

nn0/

ndiff
n .pC

nn0/�ndiff
n .�pC

nn0/�ndiff
n .p�

nn0/Cndiff
n .�p�

nn0/

ndiff
n .pC

nn0/�ndiff
n .�pC

nn0/Cndiff
n .p�

nn0/�ndiff
n .�p�

nn0/

3
777775
:

(9.2.40)

In interpreting (9.2.40) it is helpful to note that there are sums over n; n0, and
one may relabel these, effectively making the interchange n $ n0. Under this
interchange one has

p˙
nn0 D kzfnn0 ˙ !gnn0 $ kzfn0n ˙ !gn0n D kz.1 � fnn0/˙ !gnn0 D kz � p�

nn0 :

This allows one to rewrite the right hand side of (9.2.40) under the interchange n $
n0. The nongyrotropic part of the tensor does not change sign under this interchange,
so that the first two lines in (9.2.40) become
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i


"
�nsum

n0 .p
C
nn0 � kz/C nsum

n .pC
nn0/� nsum

n0 .�p�
nn0 � kz/C nsum

n .�p�
nn0/

nsum
n .pC

nn0/C nsum
n0 .kz � pC

nn0/C nsum
n .�p�

nn0/C nsum
n0 .�kz C p�

nn0/

#
;

respectively. The first of these two lines may be interpreted in terms of gyromagnetic
absorption (GA) from state n0; pC

nn0 � kz to state n; pC
nn0 plus GA from state

n0;�p�
nn0 � kz to state n;�p�

nn0 . The second line may be interpreted in terms of
pair creation (PC) into electron and positron states n; pC

nn0 and n0; kz � pC
nn0 plus

PC into states n;�p�
nn0 and n0; kz C p�

nn0 . The presence of electrons or positrons
suppresses PC, compared to its value in vacuo, and the sign of the imaginary part
is opposite to that for GA. The gyrotropic part of the tensor changes sign under the
interchange n $ n0, and when the additional change in sign is taken into account,
the third line in (9.2.40) reduces to the same combination as the first line, and the
fourth line to the same combinations as the second line. Thus the first and third lines
in (9.2.40) correspond to GA and the second and fourth lines to PC.

The contribution of the vacuum to the dissipation may be included by making the
replacements nsum

n .pz/ ! �1, ndiff
n .pz/ ! 0. Then only ImZ .2/

nn0.!; kz/ contributes.
Combining the contributions of the vacuum and the electron gas is equivalent to
replacing nsum

n .pz/ ! nsum
n .pz/ � 1 in Z .2/

nn0.!; kz/, and leaving the other three
RPDFs unchanged.

Dissipation-Free Region

The dissipation-free region is defined as the range of .k2/k D !2 � k2z between
the maximum value for gyromagnetic absorption and the minimum value to pair
creation. From (6.1.17) this range is, for given n; n0,

."0n � "0n0/
2 < .k2/k < ."0n C "0n0/

2: (9.2.41)

This condition can also be written as g2nn0 < 0 or ."0n/
2 > .k2/kf 2

nn0 . The
contribution to the dispersion from electrons in the nth Landau state involves a sum
over different virtual levels n0 and, depending on !, kz and n, can correspond to the
range where GA is allowed, to the dissipation-free range or to the range where PC
is allowed.

In the dissipation-free region, gnn0 is imaginary, it is convenient to write gnn0 D
ig0
nn0 , with g0

nn0 D Œ."0n/
2=.k2/k � f 2

nn0 �
1=2, and the ˙-solution become complex

conjugates of each other. Using the form (9.2.25), one may write

t˙nn0 D Rnn0 expŒ˙i	nn0 �; (9.2.42)

Rnn0 D
�
!"0n � .k2/kfnn0

!"0n C .k2/kfnn0


1=2
; 	nn0 D arctan

 
.k2/kg0

nn0

kz"0n

!
: (9.2.43)
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Then the definition (9.2.28) of the RPDF gives

Z�
n.tṅn0/ D

Z 1

�1
dt n�n.pz/

t � Rnn0 cos	nn0 ˙ iRnn0 sin 	nn0

t2 � 2tRnn0 cos	nn0 CR2nn0

; (9.2.44)

allowing the real and imaginary parts to be identified directly.

9.3 Magnetized Thermal Distributions

The response tensor for a thermal distribution of particles plays a central role
in the theory of dispersion in plasmas. In relativistic quantum theory, a thermal
distribution of electrons is a Fermi–Dirac (FD) distribution. Two limiting cases of
a FD distribution are the nondegenerate and completely degenerate cases. In this
section, the RPDF defined by (9.2.28) is evaluated explicitly in these limiting cases.
The nonrelativistic and cold-plasma limits are also discussed.

9.3.1 Fermi–Dirac Distribution for Magnetized Electrons

In the magnetized case, the occupation number for electrons (� D C1) and positrons
(� D �1) in a FD distribution is

n�n.pz/ D 1

e."n���/=T C 1
; (9.3.1)

where T is the temperature (in energy units), and where �˙ are the chemical
potentials for the electrons and positrons, respectively. In thermal equilibrium the
chemical potentials satisfy �C C �� D 0. Suppose that the number density of
free electrons is specified; this is the difference between the number densities of
electrons and positrons, nC � n�. In equilibrium the electron gas consists of this
fixed number of free electrons plus a number of pairs that is determined by the
condition for thermal equilibrium. The fixed number nC � n� is (SI units)

nC � n� D
1X
nD0

an.n
C
n � n�

n /; n�n D eB

2
„
Z

dpz

2
„ n
�
n.pz/; (9.3.2)

with a0 D 1, an D 2 for n � 1. For the FD distribution (9.3.1), the number densities
are functions of the chemical potential �C D ��� and the temperature, T . A pure
pair plasma corresponds to nC D n�, requiring�C D ��, and hence, �C D 0. The
chemical potential has no simple physical interpretation, except in the completely
degenerate limit, T ! 0, when it corresponds to the Fermi energy; there are no
positrons in this limit.
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In terms of integrals over t , defined by (9.2.23), the number densities in (9.3.2)
become (SI units)

n�n D eB"0n
2
2„2c an

Z 1

�1
dt

1C t2

.1 � t2/2
n�n.pz/; (9.3.3)

with n�n.pz/ written as a function of t using (9.2.23).
The proper number density for electrons or positrons is defined by (9.2.21). For

a FD distribution n�n.pz/ is given by (9.3.1) with "n written as a function of t using
(9.2.23).

9.3.2 Completely Degenerate and Nondegenerate Limits

The completely degenerate limit corresponds to T ! 0 in the FD distribution
(9.3.1). A degenerate distribution in the absence of a magnetic field corresponds to
all the states being filled for " < "F , and empty for " > "F , where the Fermi energy,
"F , is equal to the chemical potential. Similarly, for a degenerate distribution in the
presence of a magnetic field, the Fermi energy is equal to the chemical potential,
and the occupation number is unity for each Landau state with energy less than the
Fermi energy. This corresponds to all the states being filled for jpzj < pnF , where
the Fermi momentum for the nth level is

pnF D Œ"2F � ."0n/2�1=2 D ."2F �m2 � 2neB/1=2: (9.3.4)

For given "F , the Landau states are filled up to a maximum nF such that pnF is real
for n � nF and imaginary for n > nF . The levels are occupied for n � nF and
�pnF < pz < pnF and empty for jpzj > pnF , n � nF , and for all n > nF . For
"2F < m

2 C 2eB only the ground state, n D 0, is occupied.
There are no positrons present in the completely degenerate limit. The number

density of electrons is (SI units)

ne D
nFX
nD0

an
eB

2
„
Z pnF

�pnF
dpz

2
„ D
nFX
0

an
eB pnF

2
2„2 ; (9.3.5)

with a0 D 1, an D 2 for n � 1, with pnF D ."2F =c
2 � m2c2 � 2neB„/1=2. The

density increases monotonically with "F at fixed B , due to the increase in pnF for
n � nF , and due to nF increasing in a stepwise manner, with @ne=@"F singular at
the threshold for each stepwise increase in nF . The proper number density is (SI
units)

npr D
nFX
nD0

an
eB

2
„
Z pnF

�pnF
dpz

2
„
mc2

"n
D

nFX
nD0

an
eBmc

4
2„2 ln

�
"F C pnF c

"F � pnF c


: (9.3.6)
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In the nondegenerate limit, the chemical potential, �C � mc2, is large and
negative. The unit term in the denominator in (9.3.1) is then negligible, and the
resulting distribution reduces to a sum of 1D Jüttner distributions, with one such
distribution for each n. The condition for the nondegenerate limit to apply is that
the occupation number be much less than unity. The occupation number decreases
with increasing n, and the condition for degeneracy can be applied separately to
each Landau state. For an unmagnetized thermal distribution, the condition for
nondegeneracy is that the number of electrons per cubic de Broglie wavelength be
much less than unity. In the magnetized case, the condition for electrons in the nth
Landau state to be nondegenerate is that the number of electrons in this level in a
volume determined by the product of B=Bc times the Compton wavelength squared
and the de Broglie wavelength be much less than unity.

In the nondegenerate limit, it is convenient to incorporate the chemical potential
into a normalization constant, A�, by writing

n�n.pz/ D A� exp
h
�� �1C p2z =m

2c2 C 2nB=Bc
�1=2i

; A� D exp
�
��˙=mc2

�
;

(9.3.7)

with � D mc2=T the inverse temperature in units of the rest energy. The number
densities, n˙, are given by (SI units)

n˙

A˙ D
1X
nD0

an
eB

2
„
Z 1

�1
dpz

2
„ e
��"n=mc2 ; (9.3.8)

with "n=mc
2 D .1 C p2z =m

2c2 C 2nB=Bc/
1=2. By changing the variable of

integration to �, with sinh� D pz=mc.1 C 2nB=Bc/
1=2, the integral in (9.3.8)

reduces to an integral representation of a Macdonald function:

K�.x/ D .x=2/�� . 1
2
/

� .� C 1
2
/

Z 1

0

d� sinh2� � e�x cosh�: (9.3.9)

The number density in a nondegenerate, relativistic, thermal electron gas is given
by (SI units)

n˙

A˙ D
1X
nD0

an
eB"0n
2
2„2c K1.�"

0
n=mc

2/; (9.3.10)

with "0n=mc
2 D .1C2nB=Bc/

1=2. The proper number density is given by (SI units)

nṗr

A˙ D
1X
nD0

an
eBmc

2
2„2 K0.�"
0
n=mc

2/: (9.3.11)

The result (9.3.10) simplifies in the nonrelativistic limit when the asymptotic
expansion, K�.x/ D .
=2x/1=2e�x applies, provided that one also has B � Bc ,
such that the approximation .1C 2nB=Bc/

1=2 
 1C nB=Bc applies. The sum over
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n in (9.3.10) gives
1X
nD0

ane
��nB=Bc D 1

tanh.�B=2Bc/
: (9.3.12)

In the ultrarelativistic limit, � � 1, the Macdonald functions in (9.3.10) may be
approximated, for �.2nB=Bc/1=2 � 1, by the leading term in the power series
expansion,K1.x/ 
 1=x. For � � 1 and �.2B=Bc/1=2 	 1 nearly all the particles
are in the ground state, n D 0, so that the electron gas is essentially one dimensional.

9.3.3 RPDFs: Completely Degenerate Limit

The RPDF Z�
n.t0/, defined by (9.2.28), reduces to a logarithm for a completely

degenerate distribution. The absence of positrons in this limit implies that nsum
n .pz/

and ndiff
n .pz/ are equal, so that the superscripts are superfluous. Let tnF be defined

by pnF D "0n2tnF =.1� t2nF /. Then (9.2.28) gives, for the real part,

Zn.t0/ D
Z tnF

�tnF
dt

t � t0 D ln

ˇ̌
ˇ̌ tnF � t0

tnF C t0

ˇ̌
ˇ̌ ; (9.3.13)

where t0 is assumed real. The imaginary part is given by (9.2.39). The four RPDFs
(9.2.37) are all logarithmic functions (for t˙nn0 real), and it is convenient to write

Z .N /

nn0 .!; kz/ D ln�.N/

nn0 ; (9.3.14)

with N D 1; 2; 3; 4. Explicit evaluation gives

�
.1/

nn0 D
ˇ̌
ˇ̌
ˇ
tnF � tCnn0

tnF C tCnn0

tnF � 1=tCnn0

tnF C 1=tCnn0

tnF C t�nn0

tnF � t�
nn0

tnF C 1=t�nn0

tnF � 1=t�
nn0

ˇ̌
ˇ̌
ˇ ;

�
.2/

nn0 D
ˇ̌
ˇ̌
ˇ
tnF � tCnn0

tnF C tCnn0

tnF � 1=tCnn0

tnF C 1=tCnn0

tnF � t�nn0

tnF C t�nn0

tnF � 1=t�nn0

tnF C 1=t�nn0

ˇ̌
ˇ̌
ˇ ;

�
.3/

nn0 D
ˇ̌
ˇ̌
ˇ
tnF � tCnn0

tnF C tCnn0

tnF C 1=tCnn0

tnF � 1=tCnn0

tnF C t�nn0

tnF � t�nn0

tnF � 1=t�nn0

tnF C 1=t�nn0

ˇ̌
ˇ̌
ˇ ;

�
.4/

nn0 D
ˇ̌
ˇ̌
ˇ
tnF � tCnn0

tnF C tCnn0

tnF C 1=tCnn0

tnF � 1=tCnn0

tnF � t�nn0

tnF C t�nn0

tnF C 1=t�nn0

tnF � 1=t�nn0

ˇ̌
ˇ̌
ˇ : (9.3.15)

Alternatively, (9.3.15) may be written in the form
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�
.1/

nn0 D
ˇ̌
ˇ̌
ˇ
"Fp

C
nn0 � pnF "C

nn0

"F p
C
nn0 C pnF "

C
nn0

"F p
�
nn0 C pnF "

�
nn0

"Fp
�
nn0 � pnF "�

nn0

ˇ̌
ˇ̌
ˇ ;

�
.2/

nn0 D
ˇ̌
ˇ̌
ˇ
"Fp

C
nn0 � pnF "C

nn0

"F p
C
nn0 C pnF "

C
nn0

"Fp
�
nn0 � pnF "�

nn0

"F p
�
nn0 C pnF "

�
nn0

ˇ̌
ˇ̌
ˇ ;

�
.3/

nn0 D
ˇ̌
ˇ̌
ˇ
pnF�pC

nn0

pnFCpC
nn0

pnFCp�
nn0

pnF�p�
nn0

ˇ̌
ˇ̌
ˇ ; �

.4/

nn0 D
ˇ̌
ˇ̌
ˇ
pnF � pC

nn0

pnF C pC
nn0

pnF�p�
nn0

pnF C p�
nn0

ˇ̌
ˇ̌
ˇ : (9.3.16)

The resonant values p˙
nn0 , "˙

nn0 are given in terms of fnn0 , gnn0 by (9.2.3), and
rewriting (9.3.16) in terms of these quantities gives

�
.1/

nn0 D
ˇ̌
ˇ̌
ˇ
k2z ."

0
n/
4 � .k2/2k.pnF fnn0 � "F gnn0/2

k2z ."
0
n/
4 � .k2/2k.pnF fnn0 C "F gnn0/2

ˇ̌
ˇ̌
ˇ ;

�
.2/

nn0 D
ˇ̌
ˇ̌ .!"F � kzpnF /

2 � Œ.k2/kfnn0 �2

.!"F C kzpnF /2 � Œ.k2/kfnn0 �2

ˇ̌
ˇ̌ ;

�
.3/

nn0 D
ˇ̌
ˇ̌ k2z f 2

nn0 � .pnF � !gnn0/2

k2z f
2
nn0 � .pnF C !gnn0/2

ˇ̌
ˇ̌ ; �

.4/

nn0 D
ˇ̌
ˇ̌ .pnF � kzfnn0/2 � !2g2nn0

.pnF C kzfnn0/2 � !2g2
nn0

ˇ̌
ˇ̌ :

(9.3.17)

The logarithmic form for the RPDF assumes that gnn0 is real, so that t˙nn0 are real.
The logarithmic functions need to be analytically continued into the dissipation-free
region, determined by (9.2.41), where t˙nn0 are complex conjugates of each other.
One may write t˙nn0 D Rnn0 expŒ˙i	nn0 �, and evaluate the real and imaginary parts
of the RPDF evaluated using (9.2.44). However, it is simpler to use the logarithmic
form (9.3.13) with the argument of the logarithm written

tnF � t˙nn0

tnF C tṅn0

D tnF � Rnn0 cos	nn0 � iRnn0 sin 	nn0

tnF CRnn0 cos	nn0 ˙ iRnn0 sin 	nn0

D R�
Fnn0 expŒ�i	�

F nn0 �

RC
Fnn0 expŒ˙i	C

F nn0 �
;

(9.3.18)

with

RḞnn0 D Œt2nF ˙ tnFRnn0 cos	nn0 CR2nn0 �
1=2;

	˙
Fnn0 D arctan

�
Rnn0 sin 	nn0

tnF ˙Rnn0 cos	nn0



; (9.3.19)

with Rnn0 and 	nn0 given by (9.2.43). The combinations of the ˙ solutions that
appear in (9.3.15) then give
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ln

 
tnF � tCnn0

tnF C tCnn0

tnF C t�nn0

tnF � t�
nn0

!
D �i Œ	C

Fnn0 C 	�
Fnn0 �;

ln

 
tnF � tCnn0

tnF C tCnn0

tnF � t�nn0

tnF C t�
nn0

!
D 2 ln

 
R�
Fnn0

RC
Fnn0

!
: (9.3.20)

For the analogous combinations with tṅn0 ! 1=tṅn0 that appear in (9.3.15) one has
analogous expressions with RḞnn0 ! R0

Ḟ nn0 , 	Ḟ nn0 ! 	0
Ḟ nn0 on the right hand

side of (9.3.20), where R0
Ḟ nn0 , 	0

Ḟ nn0 may be defined analogous to (9.3.19) with
Rnn0 ! 1=Rnn0 , 	nn0 ! �	nn0 . With gnn0 ! ig0

nn0 imaginary in the dissipation-
free region, the response tensor in the form (9.2.38), with gnn0 ! ig0

nn0 in (9.2.35),
is hermitian.

An explicit expression for the response tensor in the completely degenerate limit
follows by inserting the RPDFs (9.3.14) with (9.3.16) into the dispersive part of
(9.2.38) with (9.2.35). In the ND part (9.2.22) of the response tensor, the proper
number density is given explicitly by (9.3.6).

9.3.4 Dissipation in a Completely Degenerate Electron Gas

Two forms of (collisionless) dissipation are possible in a completely degenerate
electron gas: gyromagnetic absorption (GA) by electrons and pair creation (PC).
Both GA and PC are resonant processes, and for given n; n0; !; kz, the resonant
values of pz and "n are p˙

nn0 and "˙
nn0 , respectively. These correspond to a resonant

4-momentump�nn0 D ."˙
nn0; 0; 0; p

˙
nn0/ D fnn0k

�

k Cgnn0k
�
D . If the initial state for GA

corresponds to p0�
n0n

D p
�

nn0 � k
�

k , the final state corresponds to p�
nn0 . The resonant

values ofpz for PC arep�
nn0 and kz�p�nn0 , corresponding to the electron and positron.

These resonant values must be real for GA or PC to be allowed, and this requires
g2
nn0 � 0.

In the completely degenerate case, for given n; n0; !; kz, the requirements on GA
that the initial state (n0) be occupied and the final state (n) be unoccupied, imply
jp˙
nn0 � kzj < pn0F , "0

n0 � "˙
nn0 � ! < "F , n0 < nF , and either jp˙

nn0j > pnF ,
"˙
nn0 > "F , n < nF or n > nF . A qualitative change occurs at jkzj D 2pnF (or

jkzj D 2pn0F ): for jkzj < 2pnF both initial and final states can be occupied (so
that there is no dissipation), and for jkzj > 2pnF at most one of the states can be
occupied. The imaginary parts of the RPDFs change abruptly by ˙i
 when !; kz

is such that one of these inequalities, for given n; n0, is replaced by an equality.
The values where these abrupt changes occur correspond to the boundaries of the
allowed regions. It is informative to identify these boundaries for two different
choices of independent variable: for kz and ! as functions of given !2 � k2z , and for
! as a function of given kz.
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Given n; n0; !2 � k2z implies that fnn0 and gnn0 are specified, and one can solve
p˙
nn0 D ˙pnF , "˙

nn0 D "F for kz and !. The solutions are

kF˙ D !2 � k2z

."0n/
2
."F gnn0 ˙ pnF fnn0/; !F˙ D !2 � k2z

."0n/
2
."F fnn0 ˙ pnF gnn0/;

(9.3.21)

with !2F˙ �k2F˙ D !2�k2z . The condition g2nn0 > 0, requires !2�k2z < ."0n�"0n0/
2

for GA and !2 � k2z > ."0n C "0n0/
2 for PC. The threshold for given n; n0; !2 � k2z

corresponds to g2nn0 D 0, when the ˙ solutions coincide. Let the threshold values
be denoted kFC D �kF� D kF0 and !FC D !F� D !F0. They are given by

kF0 D pnF

"0n
j!2 � k2z j1=2: !F0 D "F

"0n
j!2 � k2z j1=2: (9.3.22)

The solutions kF˙ or !F˙ diverge from each other as g2nn0 increases, and the regions
between the ˙ curves define the allowed regions of absorption for given n; n0; "F .
Examples of the regions in ˛–kz space, ˛ D �.!2 � k2z /, were plotted by Pérez
Rojas and Shabad [13]. The allowed regions for different n; n0 can overlap.

An alternative choice of independent variables corresponds to given n; n0; kz. One
can solve for ! by eliminating gnn0 between either p˙

nn0 D pnF or p˙
nn0 D �pnF ,

and "˙
nn0 D "F , giving the quadratic equation

!2 � 2!"F ˙ 2kzpnF C 2.n� n0/eB � k2z D 0: (9.3.23)

The solutions are [22]

!G1;2 D j �"2F � 2.n� n0/eB ˙ 2pnF kz C k2z
�1=2 � "F j;

!P1;2 D �
"2F � 2.n� n0/eB ˙ 2pnF kz C k2z

�1=2 C "F ; (9.3.24)

which apply to GA and PC, respectively. An example of such curves is shown in
Fig. 9.2 for the specific case n D n0 D 1, p1F D 2:2m, B D Bc . For n � n0 D 0,
the frequency !G2 has a local maximum at kz D pnF and is zero at kz D 2pnF ; the
frequency !P2 has a local minimum at kz D pnF . For n � n0 ¤ 0, including the
dependence on n; n0 explicitly, the solutions !G2.n; n0/, !P2.n; n0/ for kz < 2pnF
continue as !G2.n0; n/, !P2.n0; n/ for kz > 2pnF .

9.3.5 RPDFs: Nondegenerate Limit

In the nondegenerate limit, the FD distribution reduces to a 1D Jüttner distribution.
The RPDF (9.2.28) becomes
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Fig. 9.2 The boundaries of the different regions in the ! � kz plane for pnF D 2:2m, B D Bc
and n D n0 D 1 [22]. The solid line is ! D kz, the dotted line is the threshold for PC, !2 � k2z D
.2"01/

2. The dashed-double-dotted and short-dashed lines, ! D !P1 and ! D !P2, respectively.
The long-dashed and dashed-dotted lines, are ! D !G1 and ! D !G2, respectively (From [22],
reprinted with permission AIP)

Z�
n.t0/ D

Z 1

�1
dt
n�n.pz/

t � t0 D A�nI.t0; �n/: (9.3.25)

with A�n defined by (9.3.7), and where the RPDF

I.t0; �n/ D
Z 1

�1
dt

t � t0 exp

�
��n 1C t2

1 � t2
�
; (9.3.26)

is introduced, with �n D �"0n=m. The function (9.3.26) may be evaluated in terms
of the RPDF (� 4.4.3 of volume 1) used to describe dispersion for a nonquantum,
unmagnetized Jüttner distribution. This RPDF is defined by the integral (2.4.29), in
the form

T .v0; �n/ D
Z 1

�1
dv

v � v0 exp.��n�/; (9.3.27)

with � D .1 � v2/�1=2. The properties of T .v; �n/ are summarized in � 4.4.3 of
volume 1.

The combinations of the RPDF that appear in (9.2.37) are I.t0; �n/˙ I.1=t0; �n/

with t0 D tC
nn0 and t0 D t�

nn0 . These may be related to T .v0; �n/ and @T .v0; �n/@�n by
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expressing the integrals in terms of t and t0, with v D 2t=.1Ct2/, v0 D 2t0=.1Ct20 /.
One finds

T .v0; �n/ D �1C t20
t0

Z 1

�1
dt
1 � t2
1C t2

e��n�

.t � t0/.t � 1=t0/
;

@T .v0; �n/

@�n
D 1C t20

t0

Z 1

�1
dt

e��n�

.t � t0/.t � 1=t0/ : (9.3.28)

Using the identity, (4.3.3) of volume 1,

v0
@T .v0; �n/

@�n
D 2K1.�n/C 1

�20 �n
T 0.v0; �n/; (9.3.29)

with T 0.v0; �n/ D @T .v0; �n/=@v0, one has

I.t0; �n/C I.1=t0; �n/ D T .v0; �n/;

I.t0; �n/ � I.1=t0; �n/ D � 1
�0v0

h
2K1.�n/C 1

�20 �n
T 0.v0; �n/

i
: (9.3.30)

The RPDF (9.3.25) becomes

Z�
n.t0/ D A�n

2

�
� .1 � v20/1=2

v0

�
2K1.�n/C .1 � v20/

�n
T 0.v0; �n/



C T .v0; �n/

�
:

(9.3.31)

The four RPDFs (9.2.37), for either electrons or positrons, become

2
66664

Z .1/

nn0.!; kz/

Z .2/

nn0.!; kz/

Z .3/

nn0.!; kz/

Z .4/

nn0.!; kz/

3
77775

D A�n

X
˙

2
66664

˙T .v˙; �n/
T .v˙; �n/

�Œ2K1.�n/=�˙v˙ C T 0.v˙; �n/=�2˙v˙�n�
�Œ2K1.�n/=�˙v˙ C T 0.v˙; �n/=�2˙v˙�n�

3
77775
:

(9.3.32)

The specific functions that appear in the arguments of T .v˙; �n/, T 0.v˙; �n/ are

v˙ D 2tṅn0

1C Œt˙
nn0 �2

D kzfnn0 ˙ !gnn0

!fnn0 ˙ kzgnn0

; (9.3.33)

with fnn0 , gnn0 defined by (6.1.16) and (6.1.17), respectively.
The effects of partial degeneracy can be included through the expansion of the

FD distributions (9.3.1):

n�n.pz/ D
1X
ND1

.�/NC1e�N."n���/=T : (9.3.34)
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The normalization constant, A�n, and the RPDFs can all be expanded using the sum
(9.3.34). Each term in the expansion (9.3.34) has the same functional form as a
Jüttner distribution, and hence may be evaluated using the foregoing formulae,
essentially by replacing �n by N�n. This leads to an expression for the RPDF
for a FD distribution as an infinite sum. The expansion must converge when the
degeneracy is sufficiently weak, but there is no obvious way of determining the
range of convergence.

9.3.6 Nonrelativistic Distributions

The integrals that appear for a relativistic FD distribution cannot be evaluated in
terms of known functions. For a nonrelativistic FD distribution, the relevant integrals
can be evaluated in terms of polylogarithms.

In the nonrelativistic case, the occupation number (9.3.1) is approximated by
(ordinary units)

nn.pz/ D 1

e."
0
nCp2z c2=2"0n��/=T C 1

; (9.3.35)

where only the electrons are considered and the superscript C is omitted. The
distribution (9.3.35) can be interpreted as a 1D FD distribution of nonrelativistic
particles with effective mass "0n=c

2 and chemical potential � � "0n.
In the unmagnetized nonrelativistic case the normalization of the FD distribution

may be expressed in terms of a polylogarithm function, defined by

� LisC1.��/ D 1

� .s C 1/

Z 1

0

dt
t s

��1et C 1
: (9.3.36)

The power series expansion,

Lin.�/ D
1X
kD1

�k

kn
; (9.3.37)

is an alternative definition. The expansion converges rapidly for small �, which cor-
responds to the nondegenerate limit. The leading term in the asymptotic expansion
of the polylogarithm, for large �, is

� lim
�!1 Lis.��/� .s C 1/ D .ln �/s: (9.3.38)

In this limit one may interpret ln � D TF =T 	 1 as the ratio of the Fermi
temperature to actual temperature.

The normalization for a strong-B nonrelativistic magnetized FD distribution
involves (9.3.36) with s D �1=2. One finds (SI units)
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ne D
1X
nD0

an
eB

2
„
Z

dpz

2
„ nn.pz/ D �
1X
nD0

an
eB"0n
4
„/2c

�
2
T

"0n


1=2
Li1=2.��n/;

(9.3.39)
with �n D expŒ.� � "0n/=T �, and where � .1

2
/ D 
1=2 is used. The nondegenerate

limit corresponds to �n � 1, when one may approximate Li1=2.��n/ by the leading
term, ��n, in the power series (9.3.37), and then (9.3.39) reproduces the result for
a 1D Maxwellian distribution. In the completely degenerate limit, using (9.3.38)
reproduces the number density (9.3.5).

In the nondegenerate limit, the FD distribution (9.3.35) reduces to a 1D
Maxwellian distribution. The nonrelativistic plasma dispersion function, Z.y/,
defined by (2.5.5), may be used to approximate Zn.t0/ in this case. The
nonrelativistic approximation, jpzj � "0n=c, corresponds to 2jt j � 1, allowing
the t-integral in (9.2.28) to be extended to �1 < t < 1. One then finds

Zn.t0/ D
Z 1

�1
dpz n

�
n.pz/

pz � 2"0nt0
D 
1=2�n Z.yn0/; (9.3.40)

with yn0 D .2"0nt0=T /
1=2, �n D expŒ.� � "0n/=T �. In the completely degenerate

limit, one has

Zn.t0/ D ln

ˇ̌
ˇ̌pnF � 2"0nt0
pnF C 2"0nt0

ˇ̌
ˇ̌ : (9.3.41)

A more general plasma dispersion function for partial degeneracy must reduce
to (9.3.40) and (9.3.41) in the nondegenerate and completely degenerate limits,
respectively.

A generalization of the plasma dispersion function Z.y/ for an unmagnetized,
nonrelativistic FD distribution may be defined by Melrose and Mushtaq [9]

Z.y; �/D 2


1=2

Z 1

0

dt t

et
2 C �

ln
t � y

t C y
D 1


1=2

Z 1

�1
dt

t�y ln.1C�e�t 2 /: (9.3.42)

The function 	.y; �/ D �yZ.y; �/ is shown in Fig. 9.3 for several different values
ranging from the nondegenerate limit, � ! 0, to completely degenerate limit, � !
1. Near the completely degenerate limit, where ln � is large, the real part of the
plasma dispersion function may be approximated by [9]

	.y; �/ D �yZ.y; �/ D 4y2p

.ln �/3=2

�
1 � y2

3 ln �
C � � �



: (9.3.43)

In the case of partial degeneracy, the RPDF (9.2.28) becomes,

Zn.t0/ D 
1=2�n Z.yn0; �n/; (9.3.44)
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Fig. 9.3 (a) The function 	.y; �/ D �yZ.y; �/ is plotted versus y for � D 0; 0:1; 1; 10.
(b) A rescaled form of 	0.y0; �/ D �	.y; �/=.ln �/3=2 is plotted versus y0 D y=.ln �/ for
� D 10;100;104;1. The curves for � D 10 are the same, apart from the scaling. The curve
for � D 0 corresponds to the plasma dispersion function in the nondegenerate limit, and that
for � D 1 corresponds to a logarithmic function in the completely degenerate limit (From [9],
reprinted with permission AIP)

with yn0 defined following (9.3.40). The result (9.3.44) applies to a magnetized,
nonrelativistic FD distribution. The generalization to an arbitrary magnetized FD
distribution does not appear to have a representation in terms of known functions.

The RPDF appears in the response tensor with arguments t0 D t˙nn0 ; 1=t
˙
nn0 , and

the only important contributions come from values that correspond to jt0j � 1.
Suppose either jt˙nn0 j is much smaller than unity; then 1=jt˙nn0j is much larger than
unity, and gives a small contribution to the dispersion that can be neglected. On the
other hand, if either jt˙nn0 j is much larger than unity, then 1=jt˙nn0j is much smaller
than unity, and its contribution to the dispersion needs to be retained while that
from jt˙nn0 j is neglected. In these two cases, the resonant value in the denominator
in (9.3.40) are t˙nn0 
 p˙

nn0c=2"
0
n for jt˙nn0 j � 1, and �1=t˙nn0 
 p˙

nn0c=2"
0
n for

jt˙nn0 j 	 1. The RPDFs that appear in the response tensor are then approximated by

ŒZ�
n.tṅn0/; Z�

n.1=tṅn0/� 

(
ŒZ�

n.p
˙
nn0c=2"

0
n/; 0� jt˙nn0 j � 1;

Œ0; Z�
n.�pṅn0c=2"

0
n/� jtṅn0 j 	 1:

(9.3.45)
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9.4 Special and Limiting Cases of the Response Tensor

Special and approximate cases for the response tensor are discussed in this section.
Major simplification occurs in the special case of parallel propagation, k? D 0.
A “small-x” approximation preserves the important simplifying feature of parallel
propagation, while allowing a generalization to oblique propagation. A special
case of interest for extremely strong magnetic fields is for a one-dimensional (1D)
electron gas, in which all the electrons are in the state n D 0. Another special case
is a ı-function distribution, which applies when the effect of a spread in pz on the
dispersion can be neglected.

9.4.1 Parallel Propagation

A major simplification that results for k? D 0 is that the J -functions can be
approximated by unity or zero. This approximation is applied here to the vertex,
summed and RPDF forms of ˘��.k/.

Vertex Form of ˘ ��.k/: Parallel Propagation

Parallel propagation corresponds to k? D 0, implying that the argument, x D
„k2?=2eB , of the J -functions is zero. It follows from the definition (A.1.25) that
for x D 0 the J -functions reduce to J n0 .0/ D 1, J n� .0/ D 0 for � ¤ 0. Specifically,
one has

J n�1
n0�n.0/ D ın0;n; J nn0�n.0/ D ın0;n;

J n�1
n0�nC1.0/ D ın0;n�1; J nn0�n�1.0/ D ın0;nC1: (9.4.1)

With the approximation (9.4.1), the vertex form (9.1.1) of ˘��.k/ becomes

˘��.k/ D �e
3Bc2

2
„
X

�;q;�0 ;q0

Z
dpz

2
„
Z

dp0
z

2
„ 2
„ ı.�0p0
z � �pz C „kz/

�
1
2
.�0 � �/C �n�q � �0n�0

q0

„! � �"q C �0"q0

�
� �0�
q0q .k/

��
k
�
� ��0

qq0 .�k/
��

k; (9.4.2)

where the vertex functions (9.1.4) simplify through

J
.0/

q0q.k/ D .b0
s0bs C s0sb0

�s0b�s/ın0;n;

J
.˙/
q0q .k/ D s0b0�s0bse�i ın0;n�1 ˙ sb0

s0b�sei ın0;nC1: (9.4.3)
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The two terms in (9.4.3) appear in the 03- and 12-components of the vertex function,
respectively. It follows that only n0 D n contributes to the �; � D 0; 3 components
of˘��.k/, that only n0 D n˙ 1 contribute to the �; � D 1; 2 components, and that
the 01-, 02-, 13- and 23-components are zero.

Summed Form of ˘ ��.k/: Parallel Propagation

For parallel propagation the summed form (9.1.19) of ˘��.k/ simplifies due to

�
Nn0n.�pk; k/

���
k D �

2p
�

k p
�
k � �„.p�k k�k C p�kk

�

k /C �„.pk/kg��k � anın0;n

�Œp2n � �„.pk/k� g��? .ın0;n�1 C ın0;nC1/;
�
Gn0n.�pk; k/

���
k D i Œp2n � �„.pk/k� f ��.ın0;n�1 � ın0;nC1/; (9.4.4)

with a0 D 1, an D 2 for n > 0. The summed form (9.1.19) reduces to

˘��.k/ D �e
3Bc2


„
X
n

an

Z
dpz

2
„
1

"n




nsum
n .pz/

.k2/kp�k p
�
k � .pk/k.p�k k�k C p�kk

�

k /C .pk/2kg
��

k

.pk/2k � Œ
1

2
„.k2/k�2

C1

2

X
�;˙

Œ�.pk/k � 2neB�fnsum
n .pz/g

��

? ˙ i�ndiff
n .pz/f

��g
�.pk/k � 1

2
„.k2/k ˙ eB

�
: (9.4.5)

The two terms inside the curly brackets correspond to separate parallel (confined to
the 0–3 plane and perpendicular 1–2 plane) parts of the response tensor.

The nondispersive (ND) part of (9.4.5) follows by writing �.pk/k=Œ�.pk/k �
.pk/nn0 � D 1C .pk/nn0=Œ�.pk/k � .pk/nn0 �, with .pk/nn0 D 1

2
„.k2/k � eB here,

and identifying it with the integral over the unit term. This gives

˘
��
ND.k/ D �e

3Bc2

4
2„2
X
n

an

Z
dpz

"n
nsum
n .pz/g

��

? ; (9.4.6)

which corresponds to the general results (9.2.22) with (9.2.21) for k? D 0.
In (9.4.5) the parallel-components are already summed over �. The sums over

�;˙ in the perpendicular components in (9.4.5) may be performed using

1

2

X
�;˙

1

�a � b ˙ c

0
BB@

1

�

˙1
˙�

1
CCA D 2

D

0
BB@

b.a2 � b2 C c2/

a.a2 � b2 � c2/
�c.a2 C b2 � c2/

�2abc

1
CCA ;
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D D .a2 C b2 � c2/2 � 4a2b2; a D .pk/k; b D 1

2
„.k2/k; c D eB:

(9.4.7)

The resulting form is cumbersome and is not written down explicitly here.
There are effectively six resonant denominators in (9.4.5): at �.pk/k D

1
2
„.k2/k; 12„.k2/k˙eB , with � D ˙1. The term 1

2
„.k2/k is attributed to the quantum

recoil. When the recoil is neglected, there are only three different denominators,
.pk/k, .pk/k ˙ eB . In the nonquantum limit, these three denominators reduce to m
times ku, ku ˙˝0.

RPDF Form of ˘ ��.k/: Parallel Propagation

The RPDF form (9.2.38) of ˘��.k/ simplifies for k? D 0 due to

�
Nn0n.k/

���
C D � ."0n/

2

„2.k2/kc2 k
�
Dk

�
D anıa;0

�
�
.2n � a/eB

„ � 1

2
.k2/k



g
��

? Œıa;1 C ıa;�1�;

�
Gn0n.k/

���
C D i

�
.2n� a/eB

„ � 1

2
.k2/k



f �� Œıa;1 � ıa;�1�; (9.4.8)

with
�
Nn0n.k/

���
� D �

Gn0n.k/
���

� D 0. The RPDFs Z .N /

nn0 .!; kz/, N D 1; 2; 3; 4,
given by (9.2.37), are independent of k?.

The RPDF form (9.2.38) becomes

˘��.k/ D ˘
��
ND.k/C e3Bc

8
2„2.k2/k
�
X
n;n0

1

gnn0

n�
Nn0n.k/

���
C Z .1/

nn0.!; kz/C
�
Gn0n.k/

���
C Z .3/

nn0.!; kz/
o
; (9.4.9)

with the tensors in the integrand given by (9.4.8), and with the ND part given by
(9.4.6). The RPDFs in (9.4.9) with (9.4.8) have n � n0 D a D 0;˙1, and for these
values the arguments, tṅn0 ; 1=tṅn0 , of the RPDFs are given by (ordinary units)

t˙nn0 D !fnn0 ˙ kzcgnn0 � "on=„
„zcfnn0 ˙ !gnn0

: (9.4.10)

Response 3-Tensors: Parallel Propagation

For parallel propagation there are only three independent components of the
response tensor. These are ˘11.k/ D ˘22.k/, ˘12.k/ D �˘21.k/ and ˘33.k/,
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with˘13.k/ D 0 D ˘23.k/. The form (9.4.5) of the response tensor for an arbitrary
distribution gives, for k? D 0,

˘33.k/ D � e3B!2

2
2„2c2
X
n

an."
0
n/
2

Z
dpz

"n

nsum
n .pz/

.pk/2k � Œ1
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; (9.4.11)
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n .pz/

#
; (9.4.12)

with .pk/k D "n!=c
2 � pzkz, .k2/k D !2=c2 � k2z . The sums over � and ˙ in

the expressions (9.4.12) can be performed using (9.4.7). Note that although the term
proportional to n appears to be of lower order in „ than the other terms, this is not
the case when the sums are performed; in the nonquantum limit, this term sums to
zero.

The form (9.4.9) of the response tensor in terms of RPDFs gives, for the parallel
and perpendicular parts,

˘33.k/ D � e3Bc

8
2„2.k2/k
X
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."0n/
2!2

„2.k2/kc4
Z .1/
nn .!; kz/
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; (9.4.13)
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Z .1/
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iaZ .3/
n n�a.!; kz/

#
; (9.4.14)

respectively. Only n � n0 D a D 0 contributes to the parallel part (33-component),
and a D ˙1 contribute to the perpendicular part.

The corresponding nonzero components of the dielectric tensor are

K1
1 D K2

2 D 1� ˘11

"0!2
K3

3 D 1� ˘33

"0!2
; K1

2 D �K2
1 D � ˘12

"0!2
; (9.4.15)

where arguments are omitted.

9.4.2 Small-x Approximation

The small-x approximation corresponds to assuming that the argument, x D
„k2?=2eB , of the J -functions is small, and retaining terms of low order in x. This
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leads to a generalization of the results for parallel propagation, to include terms
corresponding to oblique propagation. The small-x approximation may be regarded
as a quantum counterpart of the small-gyroradius approximation for “magnetized”
particles in the nonquantum case. The gyroradius, R, is a classical concept, which
applies only in the limit of large n, such that pn D .2neB„/1=2 ! p? can be
regarded as a continuous variable. One then has nx D . 1

2
k?R/2. Thus the condition

nx � 1 is equivalent to the classical small-gyroradius approximation, k?R � 1,
for n 	 1. The small-x approximation applies for any n, and it is an intrinsically
quantum approximation for small n.

One may write x in the form

x D 1
2

�„k?
mc


2 �
B

Bc


�1
: (9.4.16)

The small-x approximation is satisfied either for sufficiently small k? for any B or
for sufficiently strong B for any k?. More specifically, for photons with refractive
index approximately equal to unity, implying k? 
 .!=c/ sin � , the condition x �
1 is satisfied sufficiently near parallel propagation, sin2 � � 1, for sufficiently soft
photons, „! � mc2.Bc=B/

1=2, or for a sufficiently strong field; for a supercritical
field, B 	 Bc , one can have x � 1 even for photons with energy of order an MeV.

Care is required in approximating the J -functions in the small-x approximation.
There is a term / k2? that contributes even in the nonquantum limit, cf. (9.1.29).
This term is present in the �; � D 0; 3 components, and to reproduce it, one needs
to retain nonzero contributions from J n�1

n0�n.x/; J nn0�n.x/ for n0 � n D ˙1. For small
x, the expansion (A.1.51) in x, implies that the lowest order corrections are of order
x1=2 / k?. The term / k2? in the nonquantum limit arises from

J n�1
1 .x/ D �J n�1.x/ 
 .nx/1=2 D k?pn

2eB
: (9.4.17)

9.4.3 One-Dimensional (1D) Electron Gas

The case of a 1D electrons gas is of interest in connection with superstrong magnetic
fields, particularly pulsar fields, where the time scale for electrons to radiate away
their perpendicular energy is so short that effectively all the electrons (and positrons)
are in the ground Landau state, n D 0. In a more general context, where states
n > 0 are also populated, the ground state is non-degenerate and needs to be treated
separately. The result for a 1D electron distribution applies to the contribution from
n D 0 for an arbitrary electron gas, where the contributions from n � 1 can be
treated by summing over the spin states.
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Summed Form of ˘ ��.k/: 1D Electron Gas

An expression for the response tensor for a 1D electron gas follows by setting n D 0

in (9.1.19) and performing the sum over �. This gives
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with "0.pz/ D .m2c4 C p2z c
2/1=2. For n D 0 the J -functions with superscript n� 1
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(9.4.19)

A given term in the sum over n0 in (9.4.18) describes the contribution due to virtual
transitions n D 0 ! n0 ! n D 0. The state n D 0 has a unique spin, s D �1,
and the spin obviously does not change for n0 D 0, For n0 > 0 the sum over spins is
already performed, so that the contribution from n0 includes the effect of both non-
spin-flip transitions, s0 D �1, and spin-flip transitions, s0 D C1. The sum over � is
also performed in deriving (9.4.18), implying that both virtual electron and virtual
positron states are included.

The J -functions that appear in (9.4.19) have simple values, .J 0n0/
2 D xn

0

e�x=n0Š
for n0 � 0, with .J 0n0�1/ identically zero for n0 D 0. The contribution from
increasing n0 decreases rapidly with increasing n0 for x � 1, when only the
lowest values of n0 need be retained. The small-x approximation may not apply
for transitions from large n0 to n D 0 and, as discussed in connection with (6.3.44)
for real transitions, virtual transitions between large n0 and n D 0 can be significant
at high frequencies.

RPDF Form of ˘ ��.k/: 1D Electron Gas

The form (9.2.38) for the response tensor for a 1D distribution is obtained by setting
n D 0 in (9.2.3), giving

f0n0 D 1
2

� n0eB
„.k2/k ; g20n0 D f 2

0n0 � m2c2

„2.k2/k : (9.4.20)

The tensors (9.2.35) in the numerator of (9.2.38) become
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The remarks made above concerning reproducing the term / k2? in the nonquantum
limit can be made specific in this case: one needs to retain the contribution from
n0 D 1 to the term / .J 0

n0/
2 to reproduce the nonquantum limit.

9.4.4 ı-Function Distribution Function

A “ı.pz/-model” is defined by assuming that the pz-distribution is a ı-function
distribution for each Landau state. This corresponds to

n�n.pz/ D a�n ı.pz/; n�n D eB

.2
„/2 ana
�
n; (9.4.22)

where n�n is the number density of particles in the nth Landau state.

RPDFs for ı.pz/-Model

For the distribution (9.4.22), the RPDF defined by (9.2.28) becomes

Z�
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2"0n

1

t0
: (9.4.23)

The RPDFs defined by (9.2.37) become
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There are poles in these RPDFs at the solutions of pC
nn0p

�
nn0 D 0 for !. Using

(9.2.36), one has

pC
nn0p

�
nn0 D ."0n/

2

.k2/kc4

�
! � a˝0n � „.k2/kc2

2"0n

� �
! C a˝0n C „.k2/kc2

2"0n

�
;

(9.4.25)

with a D n � n0 and ˝0n D eBc2="0n. Inserting these approximations into
(9.2.38) gives a general expression for the response tensor for a cold-electron gas
for arbitrary B=Bc .

Validity of the ı.pz/-Model

The conditions under which a ı-function model for the distribution function is a
valid approximation are relatively well understood in the nonquantum limit, where
assuming a ı-function in kinetic theory is equivalent to making the cold-plasma
approximation. For example, the dispersion associated with the plasma dispersion
function,Z.y/ defined by (2.5.5) with y / !, for a thermal distribution is replaced
by a pole, / 1=y, in the cold limit T ! 0, when a Maxwellian distribution
reduces to a ı-function distribution. A pole in a cold-plasma model corresponds to a
resonant frequency; when thermal effects are included Doppler broadening removes
the singularity; thermal motions effectively smear out the resonance over a Doppler
width. Nevertheless, a pole is a useful approximation to the plasma dispersion for
frequencies more than a few Doppler widths away from the resonant frequency.
This smearing effect due to thermal motions is present in a quantum treatment
and, as in the nonquantum case, it does not invalidate the ı-function model as an
approximation.

There are two inconsistencies that need to be considered when applying the ı-
function model to a quantum treatment of an electron gas.

One inconsistency is that a ı-function is formally incompatible with Fermi
statistics: the occupation number in any state cannot exceed unity, and a ı-function
distribution clearly violates this. This is unimportant in the nondegenerate case,
but it can invalidate the ı-function approximation for a degenerate distribution. It
is straightforward to compare the RPDFs for a ı-function and for a completely
degenerate distribution, for which the occupation number is unity for jpzj < pnF ,
n < nF , and zero otherwise. This involves comparing the RPDF (9.3.13), which is
Zn.t0/ D ln j.tnF � t0/=.tnF C t0/j, with the RPDF / �1=t0 for the ı-function
model. The comparison is illustrated in Fig. 9.4. The RPDF for the degenerate
distribution has logarithmic singularities at x D ˙1, corresponding to t0 D ˙tnF .
For jt0j 	 tnF , the wings of the function 1=t0 approach the asymptotes of the
logarithmic functions. In this limit, the ı.pz/-model may be a useful approximation,
but it is clearly invalid for t0 �< tnF .

The second inconsistency is associated with the quantum recoil. Dispersion in a
quantum plasma can be attributed to virtual transitions between two states, summed
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Fig. 9.4 The functions
(a) y D 1

2
ln j.1�x/=.1Cx/j

and (b) y D �1=x are
compared; they correspond to
RPDFs for completely
degenerate and ı.pz/-model
distributions, and have two
logarithmic singularities and
a pole, respectively

over all pairs of states for which the (virtual) transition is possible. The response
tensor involves the difference between the occupation numbers of these two states.
These two states have parallel momenta that differ by kz, due to the quantum recoil,
being pz and pz � kz say. The ı.pz/-model can give a contribution for pz D 0 or
for pz D kz, but not to both simultaneously. Making the ı.pz/-approximation, in
(9.1.19) for example, excludes the possibility of taking resonances at pz and pz �kz

into account simultaneously in the numerator. This inconsistency leads to seemingly
unavoidable difficulties in including the quantum recoil in a self-consistent manner
in a ı-function model. There is no logical difficulty if one neglects the recoil before
assuming a ı.pz/-model.

The RPDF for a distribution / ı.pz/ has poles at pC
nn0p

�
nn0 D 0, given by

(9.4.25), and these include quantum recoil terms. However, the ı.pz/-model is not
valid near these poles.

9.5 Wave Dispersion: Parallel, Degenerate Case

The properties of dispersion in a relativistic quantum electron gas have been
explored only in a few special cases. The discussion in this section is restricted
to examples discussed in the literature for parallel propagation (k? D 0) in a
completely degenerate electron gas (T ! 0) [3, 13, 14, 22]. After some remarks
on the static response, the emphasis in this section is on unique features of wave
dispersion in a magnetized relativistic degenerate electron gas. Even in the special
case k? D 0, interesting new features appear, notably additional wave modes,
referred to as gyromagnetic absorption modes and pair modes.
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9.5.1 Static Response

The static electric response is associated with screening of a test charge, and
includes contributions from both the electron gas and the vacuum. The effect of the
vacuum polarization on screening has been shown to becomes highly anisotropic
in a superstrong magnetic field [16], with the anisotropy due to the different
dependence on k? and kz. The static electric response for a relativistic degenerate
magnetized electron gas is discussed below for k? D 0, following [3]. The static
magnetic response can be described by the magnetic susceptibility tensor, which has
contributions from Landau diamagnetism and Pauli spin paramagnetism. The static
magnetic response of a relativistic degenerate electron gas can also be derived from
the general expression for˘��.k/ [3].

The static limit corresponds to ! ! 0. For an isotropic electron gas, it is
known that the longitudinal (electric) susceptibility approaches �!2p=!2 when the
limit jkj ! 0 is taken before ! ! 0, and approaches 1=jkj2�20 when the limit
! ! 0 is taken before jkj ! 0, with �0 the Debye length in a thermal electron gas
and the Thomas-Fermi length in a degenerate electron gas, which exhibits Friedel
oscillations (� 9.5.2 of volume 1). For the static magnetic response it is known that in
the weak-field limit, Landau diamagnetism and Pauli spin paramagnetism contribute
to the magnetic susceptibility in the ratio �1 W 3 (� 9.5.3 of volume 1).

For k? D 0, the static longitudinal electric susceptibility and the static magnetic
susceptibility are given by

�.e/.kz/ D lim
!!0

˘33.k/

"0!2
; �.m/.kz/ D � lim

!!0

�0˘
22.k/

k2z
: (9.5.1)

The relevant forms for ˘33.k/ and ˘22.k/ D ˘11.k/ are given by (9.4.13) and
(9.4.14), respectively. The static electric response follows from k? D 0, ! ! 0 in
(9.4.9) with (9.4.8), giving

�.e/.kz/ D
nFX
nD0

an
e3B."0n/

2

4
2"0„4k4z c3
Z .1/
nn .0; kz/

gnn
; (9.5.2)

with gnn D Œ."0n/
2=„2c2 C k2z =4�

1=2=jkzj. The result (9.5.2) applies for an arbitrary
distribution of electrons. For a completely degenerate distribution in the limit
! ! 0, it is convenient to use the form (9.3.16) for n0 ¤ n and the form (9.3.17)
for n0 D n. The latter gives

Z .1/
nn .0; kz/ D ln

ˇ̌
ˇ̌
ˇ
."0n/

4 � „2k2z c2. 12pnF c � "F gnn/2
."0n/

4 � „2k2z c2. 12pnF c C "F gnn/2

ˇ̌
ˇ̌
ˇ : (9.5.3)

As in the unmagnetized case, the screening involves a logarithmic function of
the wavenumber. There are logarithmic singularities at the values of kz where the
argument in the logarithm in (9.5.3) passes through zero or infinity. The values of kz
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at which the logarithmic singularities occur are related to the limit ! ! 0 of the
longitudinal GA modes discussed below. However, the physical significance of these
results is limited by the restriction to k? D 0.

The static magnetic response for a completely degenerate relativistic distribution
was derived for k? D 0 in a similar manner in reference [3]. This restriction needs
to be relaxed in a more general discussion.

9.5.2 Dispersion Equation for Parallel Propagation

For parallel propagation, the dispersion equation,�.k/ D 0, factors into a dispersion
equation for longitudinal waves,

!2 �˘33.k/="0 D 0; (9.5.4)

and dispersion equations for transverse waves with right-hand and left-hand circular
polarization,

!2 � k2z c
2 �˘˙.k/="0 D 0; ˘˙.k/ D ˘11.k/˙ i˘12.k/: (9.5.5)

Explicit expressions for the components of the response tensor for a completely
degenerate distribution follow from (9.4.13) and (9.4.14). Only a D 0 contributes
for longitudinal dispersion relation, and in this case it is convenient to use the form
(9.3.17) for the RPDF,
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(9.5.6)

with fnn D 1
2

and gnn D 1
2
Œ1 � 4."0n/

2=„2.k2/kc2�1=2. Only a D ˙1 contribute to
the transverse dispersion relations, and (9.4.14) with (9.3.16) gives
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fnn�a D aeB

„.k2/k C 1

2
; g2n n�a D f 2

n n�a � ."0n/
2

„2.k2/kc2 ; (9.5.8)
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with only a D �1 allowed for n D 0. In principle, the response tensor ˘��.k/

also includes the contributions of both the electron gas and the magnetized vacuum
[14]. The combination of the vacuum polarization and dispersion in the cold plasma
modes is discussed in � 8.4.3; the vacuum polarization is neglected here.

The components (9.5.6) and (9.5.7) of the response tensor apply in the dissipative
region, g2nn�a > 0, where the RPDFs for a completely degenerate distribution
are logarithmic functions. These RPDFs have logarithmic singularities at values
where the argument of the logarithm has a zero in the numerator or a zero in the
denominator. These singularities correspond to the values at which the antihermitian
part of the response tensor changes discontinuously by ˙i
 , as discussed in � 9.3.4.
For a zero in the numerator of the argument of the logarithm, the real part of
the logarithm approaches �1 on either side of the singularity. For a zero in
the denominator, the real part approaches C1 from either side. A logarithmic
singularity is qualitatively different from a pole, where the function changes sign
by jumping from �1 to ˙1 as a pole is crossed. Typically, associated with a
given singularity, the dispersion equation has either a doublet of closely separated
solutions on either side of the singularity, or no solution, depending on the sign of
the singularity.

9.5.3 Longitudinal Modes

The solutions of the longitudinal dispersion relation (9.5.4) for a completely
degenerate electron gas include a Langmuir-type mode and GA and PC modes
whose existence depends on intrinsically quantum effects. Both the GA and PC
modes are associated with logarithmic singularities in the response function, for
.k2/k < 0 and .k2/k > 0, respectively.

Langmuir-Type Mode

In an isotropic thermal plasma, the familiar Langmuir mode has an approximate
dispersion relation !2 D !2p C 3jkj2V 2

e , and when relativistic effects are included,
the cutoff frequency is decreased to below !p and the peak is increased to above
!p (Figs. 9.2 and 9.7 of volume 1). A counterpart of this mode exists for parallel
propagation in the magnetized relativistic quantum degenerate case.

The cutoff frequencies satisfy (9.5.4) with kz D 0 (as well as k? D 0). With
gnn D ig0

nn imaginary for !2 < k2z c
2, the RPDF becomes an arctangent rather

than a logarithmic function, as given by (9.3.20) with (9.3.19). The small-angle
approximation to the arctangent applies for pnF c � 2"Fg

0
nn, and then one has

Z .1/
nn .!; 0/

gnn
D 2pnF c

"F

„2!2
."0n/

2 C „2!2=4 : (9.5.9)
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Fig. 9.5 The real part of
1�˘33.k/="0!

2 D 0, is
plotted as a function of !=m;
the points are calculated for
pnF D 2:2m, B D Bc ,
kz D 0:1m. A solution of the
longitudinal dispersion
relation (9.5.4) occurs where
the curve passes through zero
(From [22], reprinted with
permission AIP)

With the further approximation „2!2=4 � ."0n/
2, (9.5.4) with (9.5.6) implies the

cutoff frequency

!2c D e3Bc2

2
2"0„2
nFX
nD0

anpnF

"F
: (9.5.10)

The frequency at which the dispersion curve for the longitudinal mode crosses
the light line follows from (9.5.4) with (9.5.6) by taking the limit .k2/k ! 0. This
gives

!20 D e3Bc2

2
2"0„2
nFX
nD0

anpnF "F

."0n/
2
: (9.5.11)

The inequality "F > "0n implies !0 > !c, implying that ! increases as a function of
kz over the range 0 < kz < !0=c, as for a Langmuir wave in a nonrelativistic plasma.
Similarly, in a highly relativistic plasma !20=!

2
c is large, related to the Lorentz factor

"F =mc
2, as in the unmagnetized case.

Longitudinal GA Modes

For k2z c
2 > !2 there are logarithm singularities in ˘33.k/ at the frequencies !G1;2,

given by (9.3.24) with n0 D n, that is, at! D j."2F�2pnF„kzc
2C„2k2z c2/1=2�"F j=„

and at ! D Œ."2F C 2pnF„kzc
2 C „2k2z c2/1=2 � "F �=„ for kz > 0. As illustrated in

Fig. 9.5, 1 �˘33.k/="0!
2 increases from a positive value for each n, starting with

nF , to C1 at the lower of these two frequencies, then decreases, crossing zero,
and continuing to �1 at the higher of the two frequencies, and then increasing
and crossing zero. Thus there is a doublet of solutions for each n either side of the
higher of these frequencies. The dispersion relations for the longitudinal GA modes
at given n can be approximated by Weise [22]
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Fig. 9.6 Dispersion relations for longitudinal modes plotted for the same parameters as in Fig. 9.5
(From [22], reprinted with permission AIP)

! D Œ."2F C 2pnF„kzc
2 C „2k2z c2/1=2 � "F �=„ ˙ ı˙; (9.5.12)

where ı˙ are the frequency differences between the singularity at �1 and the two
zeros on either side of it. It is evident from Fig. 9.5 that ı� is of order half the
frequency separation between the singularities, and is smaller than ıC. The two
branches of the doublets are not resolved in Fig. 9.5.

The frequencies of each doublet of GA modes decrease with increasing n. The
dispersion curves are illustrated in Fig. 9.6, where the frequency separation between
the doublets is too small to be resolved. The highest frequency GA mode is for
n D 0, and in this case there is a single mode, rather than a doublet. This mode joins
onto the Langmuir-type mode at the light line [22].

The GA modes (with the exception of the Langmuir-type mode) do not have a
cutoff frequency. The dispersion curves begin at ! D 0 with kz ¤ 0,

Longitudinal PC Modes

PC modes in a magnetized electron gas were identified by Pulsifer and Kalman [14],
who noted an analogy with Cooper pairs in a solid-state plasma. As with the GA
modes, there can be PC modes associated with different n; n0. In a completely
degenerate electron gas, there are logarithmic singularities associated with given
n; n0 provided that !; kz are in the range where PC is allowed, that is, for .k2/k >
."0n C "0n0/

2. For parallel propagation only n � n0 D 0;˙1 contribute, and only
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n � n0 D 0 contributes for longitudinal polarization. It follows that the longitudinal
PC modes are solutions of 1 � Re˘33.k/="0!

2 D 0 with .k2/k > 4."0n/2=c2.
Longitudinal PC modes occur only for „jkzj > 2pnF [22]. One finds that for

„kz D 2pnF and „! D 2"F one has gnn D 0, and then factors in the numerator
and denominator of the form (9.3.16) for �.1/

nn cancel, due to "F pṅn � pnF "ṅn D
"Fp

�
nn C pnF "

�
nn. As „kz D 2pnF is crossed singularities at ˙1 cancel. For „kz <

2pnF the logarithmic singularities at each n both are at �1, and for „kz > 2pnF
one of the logarithmic singularities is at C1 and there are solutions either side of
this singularity. The dispersion relations for the doublet of longitudinal PC modes
at each n are analogous to those for the GA modes (9.5.12):

! D Œ."2F C 2pnF„kzc
2 C „2k2z c2/1=2 C "F �=„ ˙ ı˙; kz > 2pnF : (9.5.13)

The minimum frequency for each doublet is > 2."F C pnF c/=„. As this minimum
is approached from above, the frequency separation, ıC C ı�, decreases, and the
two modes join.

9.5.4 Transverse Modes

Transverse waves (for k? D 0) in a degenerate magnetized electron gas include
modes that are generalizations of the cold plasma modes, absorption-edge modes,
GA modes and PC modes. The GA and PC modes arise from logarithmic singular-
ities in a similar manner to the longitudinal modes. For given n, GA is allowed for
„2!2 < ."0n�"0n�a/2C„2k2z c2, and PC is allowed for „2!2 > ."0nC"0n�a/2C„2k2z c2,
with a D ˙1.

Cutoff Frequencies

Near the cutoff frequencies, the transverse modes of a relativistic degenerate
electron gas reduce to counterparts of the modes of a cold classical electron gas.
The transverse dispersion equation (9.5.5) for a cold classical electron gas gives, by
using (1.2.29) with (1.2.38),

!2 � k2z c2 � !2p!

! �˝e

D 0; (9.5.14)

with the upper (lower) sign corresponding to right (left) hand polarization. The
cutoff frequencies are the solutions of (9.5.14) for kz D 0, and these are

!c˙ D 1

2

h
4!2p C˝2

e

i1=2 ˙ 1

2
˝e: (9.5.15)
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The upper and lower cutoffs are for the magnetoionic x mode and z mode,
respectively. The z mode joins on continuously to the o mode at ! D !p for
parallel propagation. The ˙ solutions in (9.5.15) correspond to right and left hand
polarizations in the sense that electron gyration is right hand.

The generalization of (9.5.15) to the relativistic degenerate case involves setting
kz ! 0 in ˘˙.k/ and solving (9.5.5) for !2:

!2 D !2p0 � e3Bc3

"02
2„3!2
X
n

X
aD˙1

.2n � a/eB � 1
2
„!2=c2

gnn�a

�



ln

ˇ̌
ˇ̌pnF cfnn�a � "F gnn�a
pnF cfn n�a C "F gnn�a

ˇ̌
ˇ̌˙ a ln

ˇ̌
ˇ̌pnF c � „!gnn�a
pnF c C „!gn n�a

ˇ̌
ˇ̌
�
; (9.5.16)

where !2p0 D e2 Nnpr="0m is the proper plasma frequency. The leading terms in the
limit in which fnn�a, gnn�a are large in magnitude give

fnn�a D a
˝0n"

0
n

„!2 C1

2

 a

˝0n"
0
n

„!2 ; g2n n�a D �f 2
n n�a

�
!2 �˝2

0n

˝2
0n



; (9.5.17)

with ˝0n D eBc2="0n. Formally, the logarithmic functions in (9.5.16) are replaced
by arctangents for g2n n�a < 0, but no error is introduced by retaining the logarithmic
forms when gnn�a is imaginary.

Simplification of the logarithmic factors occurs for pnF c � "F ; "
0
n. Retaining

only the leading term in an expansion in pnF , (9.5.16) gives

!2 D !2p0 � e3B

"02
2„2
X
n

anpnF
! ˙˝F

!2 �˝2
0n

; (9.5.18)

with ˝F D eBc2="F . In the nonrelativistic limit, ˝0n;˝F ! ˝e, (9.5.18) reduces
to the cold plasma form, (9.5.14) with kz D 0, that leads to the solutions (9.5.15).
In the general case, the cutoffs are given by the solutions of (9.5.16) with (9.5.17).

The dispersion curves for the ˙ modes are qualitatively similar to the cold plasma
limit. These curves are plotted in Figs. 9.7 and 9.8, but the scale is such that the
difference between these curves and the light line is not resolved. As in the cold-
plasma limit, the curves begin at the cutoff frequencies for kz D 0 and asymptote to
the light line for large kz.

GA Edge Modes

There is an additional class of transverse modes that start at (or near) cutoff
frequencies. These modes are near the absorption edge, where gnn0 passes through
zero. The allowed regions for GA correspond to .k2/k < ."0n � "0

n0/
2=„2c2, and the
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Fig. 9.7 Dispersion relations
for transverse modes with
right hand polarization
plotted for the same
parameters as in Fig. 9.5
(From [22], reprinted with
permission AIP)

Fig. 9.8 Dispersion relations
for transverse modes with left
hand polarization plotted for
the same parameters as in
Fig. 9.5 (From [22], reprinted
with permission AIP)

allowed regions for PC correspond to .k2/k > ."0n C "0n0/
2=„2c2. At an absorption

edges, gnn0 D 0 implies pC
nn0 D p�

nn0 D kzfnn0 , "C
nn0 D �"�

nn0 D !fnn0 . Zeros in
the arguments of the RPDF (9.3.16) for a completely degenerate distribution occur
at ˙pnF D „kz"

0
n=."

0
n � "0n0/. Consider a given frequency that is slightly larger than

."0n � "0n0/=„, with n0 D n � 1. For kz D 0, gnn0 is imaginary, and (this particular)
GA is not allowed. As kz increases at constant !, one can cross the absorption
edge and enter the region where GA is allowed and the RPDFs have logarithmic
singularities. This allows a doublet of modes to exist, provided the singularities
have the appropriate sign, which needs to be considered separately for each case.
By varying ! and looking for these solutions as a function of kz, one can identify
the dispersion relations for these absorption edge modes.

Absorption edge modes occur only for C polarization, and there is one such
mode for each of n D 0; 1; : : : ; nF . These doublet modes exist only over



9.5 Wave Dispersion: Parallel, Degenerate Case 447

pnC1F ."0nC1 � "0n/="
0
nC1 < „kz < pnF ."

0
nC1 � "0n/="

0
nC1 for 1 � n � nF � 1 and

„kz < pnF .1� "0nC1="0n/ for n D nF . These modes, as with the GA and PC modes,
are doublets, with the separation between the doublet being unresolved on the scale
of the figure. The dispersion curves are shown in Fig. 9.7 as the dotted curves labeled
G0;G1;G2, with nF D 2 in this case. The range over which these modes exist is
only a short portion of what appears to be a continuous curve, changing from dashed
to dotted to dashed-double-dotted. Only the dotted portions are the absorption edge
modes, and the two arms of the doublet join at the ends of the dotted portions. The
dotted portion is obvious for G0, but is barely resolved for G2.

Transverse GA Modes

As for the longitudinal modes, the transverse GA modes are associated with
logarithmic singularities, and are doublets. There are two classes of GA modes,
determined by solutions of (9.5.5) with the C and � signs, respectively. These
correspond to right and left hand polarizations, and it is in convenient to label them
as the GA˙ modes, respectively.

The GA modes occur near logarithmic singularities, which occur at frequencies
!G1;2, given by (9.3.24). It is convenient to rewrite these as

!G1;2.n; a/ D j."2F C 2aeB„c2 ˙ 2pnF„kzc
2 C „2k2z c2/1=2 � "F j=„; (9.5.19)

with a D n � n0 D ˙1 here. A particular logarithmic singularity then results in a
GA mode doublet only if it has the appropriate sign to lead to a solution of (9.5.5).

The dispersion relations for the GA˙ modes are illustrated in Figs. 9.7 and
9.8, respectively. The parameters chosen are pF D 2:2mc ("F D 2:4mc2) and
B D Bc , and these imply "0n D .1 C 2n/1=2mc2 and hence nF D 2. The allowed
Landau states, n and n0 D n � a with a D ˙1, are n D 0, n0 D 1; n D 1,
n0 D 0; 2; n D 2, n0 D 1; 3. The solid black lines in Figs. 9.7 and 9.8 represent
the modes !˙, and the dashed and dotted dark lines represent the GA˙ modes,
respectively. Each GA˙ mode is a doublet and the separation between the two
modes in each doublet is unresolved in the figures. The gray lines correspond to
the frequencies (9.5.19), where logarithmic singularities occur. The frequencies
!G1.n; a/, !G2.n; a/ are equal for kz D 0, and they initially increase and decrease,
respectively, with increasing kz. There is an extremum of !G2.n; a/ at „kz D pnF
(p2F D 0:9, p1F D 1:7, p0F D 2:2) and this is a minimum (n D 2) or a maximum
(n D 1; 0). A maximum occurs if !G2.n; a/ passes through zero, with the modulus
sign in (9.5.19) requiring that the curve reflects at the line ! D 0; the zeros occur at
„kz D pnF � pnC1F .

For the GA� modes in Fig. 9.8, the dotted lines labelled C and D effectively
overlie the curves showing !G2.n; 1/ in (9.5.19) for n D 0 and n D 1, respectively.
The long-dashed lines labelled A and B effectively overlie the curves showing
!G2.n;�1/ for n D 0 and n D 1, respectively. These modes all occur below the
light line.
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Fig. 9.9 Transverse PC modes for the same parameters as in Fig. 9.5 (From [22], reprinted with
permission AIP)

The GAC modes, shown by the dashed dark lines in Fig. 9.7, occur both above
and below the light line. The modes are doublets which are unresolved and are well-
approximated the frequency !G1;2.n; a/ corresponding to the relevant logarithmic
singularity. A given curve !G2.n; a/ can correspond to more than one mode, with
stop bands separating the modes. An example is the curve labeled G0, which is
above the light line and extends to infinity; this curve corresponds to three separate
modes, with no solution near kz D pnC1F ."0nC1 � "0n/="

0
nC1 and kz D pnF ."

0
nC1 �

"0n/="
0
nC1.

Transverse PC Modes

Transverse PC modes are doublets associated with logarithmic singularities. The
relevant singularities occur at the frequencies !P2, given by (9.3.24), and rewritten
here as

!P1;2.n; a/ D
h�
"2F C 2aeB„c2 ˙ 2pnF„kzc

2 C „2k2z c2
�1=2 C "F

i
=„: (9.5.20)

The singularities correspond to modes only over restricted ranges of kz. The
frequencies (9.5.20) are plotted as dashed gray curves in Fig. 9.8. There are zeros of
!P2.n; a/, which occur at „kz D pnF C pn�a F (kz D 2:6; 3:9).

The dispersion curves for the PC modes are shown as the dark portions of the
curves in Fig. 9.9. The dotted lines correspond to !P2.n; 1/ for the � mode, with the
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frequencies increasing with n D 0; 1; 2. The dashed lines correspond to !P2.n;�1/
for the C mode, with the frequencies increasing with n D 1; 2. The gray portions
denote the PC threshold where no modes exist.

9.5.5 Discussion of GA and PC Modes

The GA and PC modes, which are uniquely relativistic quantum plasma phenomena,
have been investigated only under very restrictive conditions [3, 22], in particular,
for parallel propagation and in the absence of dissipation. The following qualitative
remarks concern the implications of relaxing these restrictions.

Dissipation of the ˙ modes, and of the GA-edge, GA and PC modes, occurs at
a given n; n0 D n � a if the dispersion curve is in region where the absorption is
allowed. The GA-edge, GA and PC modes are associated with specific values of
n; a, and absorption can be associated with this n; a, or at any other n; a that is
allowed. GA is restricted to .k2/k < 0 and PC to .k2/k > ."0n/

2: PC is forbidden
for GA modes, and GA is forbidden for PC modes. The GA and PC modes are
associated with specific logarithmic singularities, and these occur only when the
absorption is allowed, g2n n�a > 0. For these modes, the absorption associated with
the values of n; a that define the mode can never be zero. Formally, absorption
can be treated by including the antihermitian part of the response tensor in the
dispersion equation, (9.5.4) or (9.5.5), and searching for complex solutions for !. In
the absence of absorption, the solutions are doublets. On including absorption, these
solutions can be interpreted as modes only if the imaginary part of the frequency is
less than the doublet separation.

On relaxing the assumption of parallel propagation, the dispersion equation no
longer factorizes into three equations, for longitudinal and oppositely circularly
polarized transverse modes. Solutions of the general dispersion equation then have
polarizations that have both longitudinal and transverse components, with the
transverse component being elliptical in general. Although this greatly increases
the algebraic complexity, an important feature does not change. The location of the
logarithmic singularities, which determine the GA and PC modes, is independent of
k?. Hence, for k? ¤ 0, one expects there to be GA and PC modes with dispersion
curves in !–kz space similar to the dispersion curves for the modes identified above.
These dispersion curves are well approximated by !G1;2.n; a/ and !P1;2.n; a/, with
a D 0;˙1 and 0 � n � nF . The restrictions on the allowed ranges of kz are
also independent of k?, and hence one expects these dispersion curves to be closely
analogous to those shown in Figs. 9.6–9.9.

The physical implications of the existence of these modes has not been explored
in detail. In particular, the PC modes can exist only under exotic conditions, and
can be excited and dissipated only through PC. An interesting additional effect, that
has not be discussed in this context, is the existence of bound (positronium) states
� 6.5, which should introduce a qualitatively different singularity into the dispersion
equation.
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9.6 Response of a Spin-Polarized Electron Gas

The results for ˘��.k/ derived in � 9.1 and � 9.2 apply to an unpolarized electron
gas. In a spin-polarized electron gas the average (over the electron gas) value of the
spin is nonzero. In a magnetic field, the only spin eigenstates that do not precess
are those of the magnetic-moment operator. A net spin then corresponds to a net
magnetization of the electron gas. A nonzero magnetization leads to an additional
contribution to the response tensor, ˘��

m .k/, that describes the spin-dependent part
of the response. In this section, this contribution to the response tensor is calculated
assuming that the occupation number depends on the spin, s, with s D ˙1 labeling
the eigenstates of the magnetic-moment operator.

9.6.1 Spin-Dependent Occupation Number

In general, the occupation number, n�q ! n�n;s.pz/, is different for the two spin
states, s D ˙1. Introducing the sum and difference

Nn�n.pz/D 1
2

�
n�n;C.pz/Cn�n;�.pz/

�
; �n�n.pz/D 1

2

�
n�n;C.pz/ � n�n;�.pz/

�
;

(9.6.1)

the dependence on s is made explicit by writing

n�ns.pz/ D Nn�n.pz/C s�n�n.pz/: (9.6.2)

A ‘spin-independent’ electron gas means �n�n.pz/ D 0. An exception is for n D 0,
for which there is a unique spin state, s D �1, implying that n�0C.pz/ is identically
zero.

The magnetic-moment eigenvalues for an electron or positron are 1
2
g�B�s,

where g D 2:00232 : : : is the gyromagnetic ratio, and �B D e=„2m is the Bohr
magneton. A spin-dependent electron gas has a nonzero magnetization, M , directed
along the magnetic field. The contributions of the electrons and positrons in the nth
Landau state to the number density, N�

n , and magnetization,M�
n , are given by

 
N�
n

M�
n

!
D eB

2


Z
dpz

2


 
2 Nn�n.pz/

g�B��n
�
n.pz/

!
; (9.6.3)

respectively. Thus the spin-independent part of the response tensor is proportional
to N�

n and the spin-dependent part is proportional to M�
n .
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9.6.2 General Forms for ˘
��
m .k/

The derivation of the spin-dependent part of the response tensor involves a
straightforward generalization of the derivations in � 9.1 and � 9.2.

Sum over s; s0

On inserting (9.6.2) into (9.1.1), there are three different sums over s; s0:

1

2�0�"0
n0"n

0
B@
ŒCn0n.�

0p0
k; �pk; k/���

ŒDn0n.�
0p0

k; �pk; k/���

ŒD0
n0n
.�0p0

k; �pk; k/���

1
CA D

X
s0:s

0
@
1

s

s0

1
A Œ� �0�

q0q .k/�
�Œ� �0�

q0q .k/�
�� :

(9.6.4)

The first sum applies to the spin-independent part, and is given by (5.4.24). The other
two sums in (9.6.4) contribute only to the spin-dependent part. Explicit evaluation
gives
h
Dn0n

�
P 0

k
; Pk; k

	i�� D m
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� n
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P �

k
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k

o �
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2 � .J nn0
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�
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o
�.J n�1

n0
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2
o	
;

(9.6.5)

with the other tensor implied by (9.6.5) and the symmetry property

ŒD0
n0n.P

0
k; Pk; k/��� D ŒDnn0.�Pk;�P 0

k; k/�
��: (9.6.6)

Summed Form of ˘
��

m .k/

The spin-dependent contribution to the response tensor in the form (9.1.10) is

˘��
m .k/ D �e

3B

2


X
n;n0

� Z
dpz

2


X
�

��n�n.pz/

�
Dn0n.�pk � kk; �pk; k/

���
2"nŒ�.pk/k � .pk/nn0 �

�
Z
dp0

z

2


X
�0

�0�n�0

n0.p
0
z/

�
D0
n0n.�

0p0
k; �

0p0
k C kk; k/

���
2"0

n0Œ�0.p0k/k � .p0k/nn0 �

�
: (9.6.7)

As in the spin-independent case, one may rewrite (9.6.7) in a variety of ways. By
making the replacements n0; p0

z ! n; pz and �0 ! �� in the second integral in
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(9.6.7), one derives a form analogous to the summed form (9.1.19):

˘��
m .k/ D �e

3B

8
2

X
�;n;n0

Z
dpz

"n

1

�.pk/k � .pk/nn0

�˚��nsum
n .pz/

�
�Nn0n.�pk; k/

���C�ndiff
n .pz/

�
�Gn0n.�pk; k/

����
; (9.6.8)

where the sign � is replaced by �, which can no longer be interpreted as labeling
electron and positron states. In place of (9.1.16) one has

�
Dn0n.�pk � kk; �pk; k/

��� D �
�Nn0n.�pk; k/

��� C �
�Gn0n.�pk; k/

���
; (9.6.9)

with the numerator in the second term becoming
�
Dn0n.�pk �kk; �pk; k/

���
, which

is equal to
�
�Nn0n.�pk; k/

��� � �
�Gn0n.�pk; k/

���
. Explicit forms for the tensors

in the numerator of (9.6.8) follow from (9.6.5), (9.6.6), and (9.6.9):

Œ�Nn0n.�pk; k/
��� D m

"0n

�
n
Œ2p

�
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�
k � �.p

�
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�
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�
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�
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n0�n/
2 � .J nn0�n/

2�
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�
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�? � �p�kk�?�Œ.J n�1

n0�nC1/2 � .J nn0�n�1/2�
o
;

Œ�Gn0n.�pk; k/��� D �i m
"0n

˚
Œ�.pk/kf �� � �p

�

k k
�
G C �p�kk

�
G�

�Œ.J n�1
n0�nC1/2 C .J nn0�n�1/2�

�
: (9.6.10)

Spin-Dependent Response in Terms of RPDFs

The spin-dependent part, ˘��
m .k/, of the response tensor can be rewritten in terms

of the RPDFs introduces in � 9.2. The counterpart of (9.2.10) is

˘��
m .k/ D e3B

16
2.k2/k

X
�;n;n0

Z
dpz

"n

�."n! C pzkz/C .pk/nn0

.�pz � pC
nn0/.�pz � p�

nn0/

�˚��nsum
n .pz/

�
�Nn0n.�pk; k/

���

C�ndiff
n .pz/

�
�Gn0n.�pk; k/

����
; (9.6.11)

As for the spin-independent part, (9.6.11) can be evaluated in terms of a single
RPDF, defined by analogy with (9.2.13) as

�K�
n.�pk˙/ D

Z
dpz

�n�n.pz/

"n

�"n C "˙
nn0

�pz � p˙
nn0

: (9.6.12)
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This RPDF can be expressed in terms of RPDFs defined by analogy with (9.2.28),

�Z�
n.t0/ D

Z 1

�1
dt
�n�n.pz/

t � t0
; (9.6.13)

giving, in place of (9.2.29),

K�
n.�pk˙/ D .�C 1/Z�

n.t
˙
nn0/� .� � 1/Z�

n.1=t
˙
nn0/: (9.6.14)

The extra sign �, in the integrand of (9.6.11) compared with (9.2.10), reverses the
signs of the terms with argument 1=tṅn0 in the counterpart of (9.2.37).

The resulting expression for the spin-dependent part of the response tensor is
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where there is no spin-dependent contribution to the ND part. The RPDFs are
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(9.6.16)

The tensors labeled ˙ are the parts of (9.6.10) that are evaluated at �p�k D p
�

k˙, and
separated into the parts that are even and odd, respectively, under the interchange
of the ˙ solutions, as for the spin-independent tensors (9.2.34). Explicit forms for
these tensors are
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The term proportional to .J n�1
n0�n/2 � .J nn0�n/2 can be rewritten using the identity

(A.1.37), giving

.2fnn0 � 1/Œ.J n�1
n0�n/2 � .J nn0�n/2� D �k2?

.k2/k
Œ.J n�1

n0�nC1/2 � .J nn0�n�1/2� (9.6.18)

This replacement is convenient in the small-x approximation, where the left hand
side of (9.6.18) vanishes to lowest order in x, requiring that higher order terms be
retained. Use of (9.6.18) gives the relevant limiting form directly.

The combination of the spin-independent part (9.2.38) and the spin-dependent
part (9.6.15) gives a general expression for the response tensor for an arbitrary
(magnetized relativistic quantum) electron gas.

9.6.3 Small-x Approximation to ˘
��
m .k/

The small-x approximation is discussed in � 9.4.2. The small-x approximation to the
spin-dependent contribution (9.6.16) to the response tensor involves only the tensors
(9.6.18), and it allows one to derive an approximate form for ˘��

m .k/ that is of
relatively wide validity. In the small-x approximation the J -functions, in (9.6.10) or
(9.6.17), are approximated by the leading term in the expansion in x. Only n0 �n D
˙1 need be retained, with n0 D n and jn0 � nj � 2 not contributing to lowest order
in an expansion in „.

The terms in (9.6.18) that involve .J n�1
n0�nC1/

2 ˙ .J n
n0�n�1/

2 are approximated by
ın0;n�1 ˙ ın0;nC1. The term that involves .J n�1

n0�n/2 � .J nn0�n/2 gives a contribution of
order x for n0 � n D ˙1,
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One may derive (9.6.19) either by using the expansion (A.1.51), or by first applying
the identity (A.1.37), in the form
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to (9.6.17). The resulting term / k2? is of the same order in „ as the other leading
terms in (9.6.17). The small-x approximation to (9.6.17) then gives
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The small-x approximation does not affect the RPDFs.

9.6.4 Reduction to the Cold-Plasma Limit

Some physical implications of spin dependence in an electron gas are discussed
in the context of a quasi-classical treatment of the spin � 1.5, and the comments
here are restricted to two aspects: the validity of the cold-plasma model and the
validity of the quasi-classical treatment of spin. In brief, there are unresolved logical
inconsistencies between the spin-dependent relativistic quantum result and quasi-
classical models for the inclusion of spin.

A specific form for the response tensor for a spin-dependent cold electron gas is
derived in � 1.5.4 using a covariant quasi-classical model (the BMT model) for the
spin. It is of interest to compare the resulting form (1.5.20) for ˘��

m .k/ for a cold
electron gas [10], with the relativistic quantum results. The relevant approximations
to the relativistic quantum result include the small-x approximation (9.6.21), the
neglect of the quantum recoil, and the cold-plasma approximation. However, the
relativistic quantum forms (9.6.8) or (9.6.15) do not reproduce the quasi-classical
result (1.5.20) in any obvious way. In the spin-independent case, the known cold-
plasma limit is reproduced. In the spin-dependent case, the leading terms in the
numerator can all be regarded as quantum corrections, and the cold-plasma limits
of either (9.6.8) with (9.6.10) or (9.6.15) with (9.6.16) and (9.6.21) lead to different
results.

The failure of the relativistic quantum expression to reproduce the quasi-classical
result suggests that the quasi-classical theory for spin is inadequate in this context.
In a quasi-classical theory the spin is represented by a vector s, and no distinction is
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made between different spin operators. This is consistent with the Schrödinger-Pauli
theory, in which the spin and the dynamics are independent, but it is not consistent
with Dirac’s theory. This difference can be illustrated by the role that the magnetic-
moment tensor plays in the two theories. In the quasi-classical theory, the magnetic-
moment tensor (1.5.13), viz. m�� D � 1

2
g�B�

��˛ˇs˛uˇ, is identified with the spin-
dependent part of the response of the medium, whose induced 4-magnetization is
M�� D nem

�� , which is used to identify ˘��
m .k/ in the derivation of (1.5.20). No

distinction is made between different spin operators in a quasi-classical model: the
existence of s is simply postulated, as it also is in the Schrödinger-Pauli theory.

There is no uniquely defined spin operator in Dirac’s theory, and there are many
possible choices of different spin operators. The forms (9.6.8) and (9.6.15) are
derived under the explicit assumption that s is the eigenvalue of the magnetic-
moment operator, as discussed in � 5.2.2. In the relativistic quantum theory, the
magnetic-moment operator for the electron is constructed so that it commutes with
the Dirac Hamiltonian. This operator is decomposed of the electric dipole and
magnetic dipole operators. These operators are written down in the unmagnetized
case in � 10.1.2 of volume 1, and the magnetic momentum operator in a magnetic
field is written down in (5.2.8), viz. Oμ D m˙ � iγ � Op, where ˙ and γ are Dirac
matrices written in 3-vector forms. In the presence of a static electromagnetic field,
the operator Oμ evolves according to

d Oμ
dt

D e�0 ˙ � B � ieγ � E ; (9.6.22)

implying that for E D 0 the components perpendicular B precess. The choice of the
component of Oμ along the B as the spin operator leads to eigenvalues that do not
precess. In contrast, in the quasi-classical theory, the spin is identified as a quasi-
classical vector s with no distinction being made (or seemingly being possible)
between the possible spin operators it supposedly describes.

The validity of the quasi-classical models in deriving the response of a spin-
dependent electron gas needs to be confirmed by showing that they are valid limits of
the relativistic quantum results. At the time of writing, this is an unresolved problem.

9.7 Nonlinear Response Tensors

As with the linear response, the nonlinear responses are of interest for both an
electron gas and for the magnetized vacuum. The method used in � 9.1 to calculate
the response of an electron gas generalizes in a straightforward manner to the
hierarchy of nonlinear response tensors, and allows one to treat both the vacuum
and the electron gas in the same way. This approach involves an infinite sum over
the Landau quantum number. An alternative approach, using the Géhéniau form for
the electron propagator, leads to closed form expressions, with no infinite sum, but
applies only to the vacuum response.
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The general forms for the nonlinear response tensors derive in this section are
cumbersome, and for most purposes simpler forms suffice. The response of the
magnetized vacuum at low frequencies can be treated using the Heisenberg-Euler
Lagrangian, and the contribution from an electron gas can be treated assuming the
cold plasma model, which applies when the phase speeds of the wave are much
higher than the thermal speed of the particles.

9.7.1 Closed Loop Diagrams

In QPD, the .n C 1/th rank response tensor is derived from the amplitude for a
closed loop diagram with nC 1 sides, with n D 1, n D 2, n D 3 corresponding to
the linear, quadratic and cubic responses, respectively.

The Feynman amplitude for an n-sided electron loop follows from the nth order
term in the expansion of S -matrix with no contractions:

OS.n/ D � .�e/
n

nŠ

Z
d4x1

Z
d4x2 : : :

Z
d4xn �

�1G.x1 � x2/��2 : : : ��nG.xn � x1/

� W OA�1.x1/ OA�2.x2/ : : : OA�n.xn/ W : (9.7.1)

The term with n D 2 involves two propagators, and leads to the linear response,
the term with n D 3 involves three propagators and leads to the quadratic response,
and so on. The quadratic response tensor, in coordinate space, is identified from the
integrand of (9.7.1) for n D 3, as

˘���.x; x0; x00/ D 1

2

�
˘
���
1 .x; x0; x00/C˘

���
1 .x; x00; x0/

�
;

˘
���
1 .x; x0; x00/ D ie3Tr

�
��G.x; x0/��G.x0; x00/��G.x00; x/

�
: (9.7.2)

The two contributions come from two triangle diagrams with different ordering of
the three vertices. The quadratic response of the magnetized vacuum follows directly
from (9.7.2) by inserting the Géhéniau form for the electron propagator, and Fourier
transforming [19]. The response of the vacuum plus that of an electron gas may be
obtained from (9.7.2) using the vertex formalism, and replacing the propagators by
their statistical averages over the electron gas. Both approaches are discussed below.

9.7.2 Quadratic Response Tensor for the Vacuum

The quadratic response tensor for the magnetized vacuum was derived by Stone-
ham [19] in connection with photon splitting � 8.5. Inserting the electron propagator
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in the form (5.3.15) into (9.7.2) gives
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00�x/ˇF ˛ˇ

�Tr
�
���.x; x0/���.x0; x00/���.x00; x/

�
: (9.7.3)

There is freedom to locate the space-time origin, and this may be used to write
(9.7.3) in terms only of the differences between the space-time points. Specifically,
if one chooses the origin at x D 0, then (9.7.3) simplifies to
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The quadratic response tensor in momentum space then follows from
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with k D k0 C k00.
The Fourier transform may be performed following [1], to find
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The resulting expression is

D
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1 .�k; k0; k00/ D
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d4x d4x0 e�ik0x0�ik00x00

e
� 1
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ieB.x0y00�x00y0/

D1.x
0; x00/:

(9.7.8)
It is helpful to write k ! �k0, k0 ! k1, k00 ! k2, so that one has k0Ck1Ck2 D 0,
and to make the dependence on s, s0, s00 explicit, writing s ! s0, s0 ! s1, s00 ! s2.
Then one has

D
���
1 .k0; k1; k2I s0; s1; s2/ D D

���
1 .k1; k2; k0I s1; s2; s0/: (9.7.9)

However, even when all the symmetries are taken into account, the result remains
cumbersome [19], and is not written down here. For most purposes, the low-
frequency response suffices, and this may be derived much more simply by using
the Heisenberg–Euler Lagrangian.

9.7.3 Nonlinear Responses: The Vertex Formalism

Using the vertex formalism allows one to include the contribution of the electron gas
and the vacuum together. In the unmagnetized case one can identify the nth order
nonlinear response tensor in momentum space from (9.7.1) simply by expressing
the propagators in terms of their Fourier transforms and then carrying out the space-
time integrals, which all give ı-functions. The n ı-functions ensure conservation of
4-momentum at the n vertices, and one can carry out n � 1 of the 4-momentum
integrals over these ı-functions, leaving a single ı-function, which expresses
conservation of the external 4-momentum, plus the integral over the undetermined
loop 4-momentum. In the magnetized case this procedure is not possible because the
Fourier transform of the propagator does not exist. This difficulty can be overcome
by writing (9.7.1) in terms of vertex functions whose Fourier transform does exist.
The energy and the parallel momentum are conserved at each vertex, and are treated
in the same manner as any of the components of 4-momentum in the unmagnetized
case.

The propagators in (9.7.1) are interpreted as statistical averages over the electron
gas, as in (5.5.22). The n space integrals in (9.7.1) are then trivial, giving n

ı-functions. Similarly, the n time-integrals in (9.7.1) give n ı-functions. The n
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propagators have both real (principal value) and imaginary parts, and the statistical
average affects only the latter. The only physical contributions are those correspond-
ing to the imaginary part of one propagator times the real parts of all the others,
and there is one such contribution for each line in the diagram. (The term with all
principal value parts gives zero, and terms with more than one resonant part are
nonphysical due to the use of the Feynman propagator.)

In this way (9.7.1) reduces to
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This procedure leads only to the nondissipative part of the response tensor. The
causal condition needs to be imposed separately to obtain the dissipative part. The
causal condition in included by the Landau prescription of giving the frequencies in
Er � Er�1 C !r D 0 an infinitesimal positive imaginary part. The resonant parts
of the nonlinear response tensors are usually ignored, and only the principal value
parts of the E-integral at each of the poles is retained in (9.7.10).

The specific form of the vertex functions Œ��
0�
q0q.k/�

� in (9.7.10) depends on the

choice of gauge. The gauge-dependent factors can be included in a factor d�
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multiplying a gauge-independent vertex function Œ� �0�
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�, as in (5.4.2), viz.
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For the Landau gauge, the gauge-dependent factor is given by (5.4.9). There are n
integrals over the p1y : : : pny and n integrals over the p1z : : : pnz, and n � 1 of each
of these are performed over the ı-functions in the gauge-dependent factors. The
resulting expression, which is independent of the choice of gauge, is
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where qr denotes the numbers nr , sr , .pz/r , with r D 1; : : : ; n. The .pz/r are related
by .pz/r�.pz/r�1C.kz/r D 0, and the pz-integral is over the undetermined additive
constant in each of the .pz/r . The exponential factor in (9.7.12) arises from the sum
rule, (5.4.15), obeyed by the gauge-dependent factors.

The final step in the formal identification of the nonlinear response tensors
involves the identification of the interaction energy in terms of S -matrix elements
with the interaction energy implied by the nonlinear response. This corresponds to
the identification

�i˘�0�1:::�n .k0; k1; : : : ; kn/.2
/
4ı4.k1 C � � � C kn/

D .ie/nC1
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10 :::n0L

�n0 ����10�0.kn0 ; : : : ; k10 ; k0/; (9.7.13)

where the sum is over all permutations of 10 : : : n0 amongst 1 : : : n.
Applying (9.7.13) to the linear case n D 1 gives the expression (9.1.1) for the

linear response tensor. The notation in (9.7.13) corresponds to a linear response
tensor˘��.k0; k1/ with two argument that satisfy k0Ck1 D 0. One writes k1 ! k,
k0 ! �k and ˘��.k0; k1/ ! ˘��.k/. The contribution of the linear response
from the vacuum needs to be regularized, but this is unnecessary for the quadratic
response tensor.

9.7.4 Quadratic Response Tensor

The resulting expression for the quadratic nonlinear response tensor has two related
contributions (from the two triangle diagrams with different order of the vertices),
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The contribution of the electron gas arises from the terms proportional to the occupa-
tion numbers. In contrast with the linear response, where the sum and the difference
of the contribution of the electrons and positrons appear in the nongyrotropic and
gyrotropic parts of the response tensor, respectively, for the quadratic response the
situation is reversed, and the difference between the contribution of the electrons and
positrons appears in the nongyrotropic terms. The gyrotropic terms, which vanish
/ B for B ! 0, contain the sum of the contributions of the electrons and positrons.

The terms in (9.7.14) that are independent of the occupation numbers, nq ,
correspond to the quadratic response of the vacuum. The contribution of the vacuum
to the quadratic response tensor does not need to be regularized.

Further the evaluation of the quadratic response tensor for a magnetized vacuum
using the form (9.7.14), involves performing the sum over spins, and the sums
over the signs �i . The full result is cumbersome; some particular combinations of
components were written down by Mentzel et al. [12] and Weise et al. [23], in
connection with what is called the S -matrix treatment of photon splitting in vacuo.
The forms (9.7.14) and (9.7.15) are the most convenient when the sums over the
Landau quantum numbers, n1; : : :, converge rapidly, which is the case when the
arguments of the J -functions are small. This is the small-x condition, which here
requires k2i?=2eB � 1 for all wavenumbers, ki . For photon splitting this requires
!i sin �i � m.2B=Bc/

1=2 for all three photons. Thus the form (9.7.14) is convenient
for treating photon splitting for sufficiently low frequencies or in sufficiently strong
fields, B �>Bc .

9.7.5 Cubic Response Tensor

The cubic response tensor follows from (9.7.13) with n D 3:

˘��2�3�4.k1; k2; k3; k4/ D
X
P

P 220

3
30

4
40˘

��20�30�40
1 .k1; k20 ; k30 ; k40/;

˘
����
1 .k1; k2; k3; k4/ D e3B

12


Z
dpz

2


� exp

2
4�

X
j<i

.ki � kj /z

2eB

3
5 X
q1;q2;q3;q4

"
4X

rD1

1
2 �r .1 � 2n

�r
qr /

drdrC1drC2

#

� Œ��4�1q4q1
.�k1/�

�Œ��1�2q1q2
.�k2/�

� Œ��2�3q2q3
.�k3/�

�Œ��3�4q3q4
.�k4/�

� ;

dr D !r C �r "qr � �r�1"qr�1 ; (9.7.15)

with r C 4 
 r . The response of the medium arises from the terms proportional to
the occupation numbers; as for the linear response, the contributions of the electrons
and positrons add for the nongyrotropic terms.
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The terms in (9.7.15) that are independent of the occupation numbers, nq ,
correspond to the cubic response of the vacuum. As with the cubic response tensor
for B ! 0, the divergent parts are removed by discarding the part that does not
satisfy the charge-continuity and gauge-invariance conditions. This may be achieved
by projecting (9.7.15) onto the set of basis vectors (8.1.2).
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Appendix A
Special Functions

A.1 Bessel Functions and J -Functions

The properties of Bessel function are summarized in standard references [1, 3, 8].

A.1.1 Ordinary Bessel Functions

Ordinary Bessel functions, J�.z/, have the following properties.
Differential equation:

z2J 00
� .z/C zJ 0

�.z/C .z2 � �2/J�.z/ D 0; (A.1.1)

where a prime denotes differentiation with respect to z.
Power series:

J�.z/ D
1X
kD0

.�1/k
kŠ� .k C � C 1/

.z=2/2kC�: (A.1.2)

Recursion relations:

J��1.z/C J�C1.z/ D 2
�

z
J�.z/; (A.1.3)

J��1.z/� J�C1.z/ D 2J 0
�.z/: (A.1.4)

Generating function:

eiz sin	 D
1X

nD�1
ein	Jn.z/: (A.1.5)
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Sum rules:

1X
nD�1

J 2n .z/ D 1;

1X
nD�1

nJ 2n .z/ D 0;

1X
nD�1

Jn.z/J
0
n.z/ D 0;

1X
nD�1

n2J 2n .z/ D 1

2
z2;

1X
nD�1

J 02
n .z/ D 1

2
: (A.1.6)

A.1.2 Modified Bessel Functions I�.z/

Differential equation:

I 00
� .z/C 1

z
I 0
�.z/ �

�
1C �2

z2



I�.z/ D 0; (A.1.7)

Power series:

I�.z/ D
1X
kD0

1

kŠ� .k C � C 1/
.z=2/2kC�: (A.1.8)

Recursion relations:

I��1.z/� I�C1.z/ D 2.�=z/Is.z/;

I��1.z/C I�C1.z/ D 2I 0
�.z/: (A.1.9)

Generating function:

ez cos	 D
1X

sD�1
Is.z/e

˙is	; (A.1.10)

A.1.3 Macdonald Functions K�.z/

Differential equation:

d2

d z2
K�.z/C 1

z

d

d z
K�.z/�

�
1C �2

z2



K�.z/ D 0; (A.1.11)
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Recursion relations:

K��1.z/�K�C1.z/ D �2.�=z/K�.z/;

K��1.z/CK�C1.z/ D �2K 0
�.z/: (A.1.12)

The recursion relations imply K��.z/ D K�.z/ and

1

z

d

d z

�
z˙�K�.z/

� D �z˙��1K��1.z/: (A.1.13)

Expansion of K�.z/ for small z is

K�.z/ 
 2��1� .�/ z��: (A.1.14)

The asymptotic expansion for large z is

K�.z/ D
�



2z


1=2
e�z

�
1C 4�2 � 1

8z
C .4�2 � 1/.4�2 � 9/

128z2
C � � �



: (A.1.15)

Integral representation:

K�.x/ D .x=2/�� . 1
2
/

� .� C 1
2
/

Z 1

0

d� sinh2� � e�x cosh� (A.1.16)

The Gamma function satisfies

� .x C 1/ D x� .x/; � .1/ D 1; �
�
1
2

� D 
1=2: (A.1.17)

The integral (A.1.16) also applies when � is negative, and then K��.x/ D K�.x/

implies

K�.x/ D .x=2/��� .� C 1
2
/ cos
�

� .1
2
/

Z 1

0

d�
e�x cosh�

sinh2� �
; (A.1.18)

�
�
1
2

C �
�
�
�
1
2

� �
� D 


cos
�
: (A.1.19)

An integral identity due to Schwinger is

Z 1

0

d� �2K2
�.�/ D 
2.1 � 4�2/

32 cos
�
: (A.1.20)
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A.1.4 Airy Functions

The two Airy functions that appear are defined by

Ai .z/ D 1




Z 1

0

dt cos
�
zt C 1

3
t3
�
; Gi .z/ D 1




Z 1

0

dt sin
�
zt C 1

3
t3
�
:

(A.1.21)

For z > 0 one has

Ai .z/ D 1




� z

3

	1=2
K1=3.�/; Ai0 .z/ D � z



p
3
K2=3.�/; (A.1.22)

with � D 2z3=2=3.
The approximations available for Gi .z/ are for large and small z. The leading

terms in the asymptotic expansion for z 	 1 are [5]

Gi .z/ � 1




�
1

z
C 2

z4
C � � �



; Gi0 .z/ � 1




�
� 1

z2
C � � �



;

Z z

d z0 Gi .z0/ � 1




�
ln z C 2C C ln 3

3
� 2

3z3
C � � �



; (A.1.23)

where C D 0:577 � � � is Euler’s constant. The expansion for z � 1 gives

Gi .z/ D 1




�
31=3

2
� .4=3/C 32=3

4
� .5=3/ z � z2

2
C � � �

�
;

Gi .0/ D 0:205; Gi0 .0/ D 0:149: (A.1.24)

Rothman [5] found that the asymptotic expansion is accurate for z �>8 and tabulated
the functions for lower z.

A.1.5 J -Functions

Definition

The J -functions used here are defined by, for � � 0,

J n� .x/ D
�

nŠ

.nC �/Š


1=2
e�x=2x�=2 L�n.x/: (A.1.25)
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By requiring J n� .x/ D .�/�J nC��� .x/, for � < 0 one has

J n� .x/ D .�/�
�
.n � j�j/Š

nŠ


1=2
e�x=2xj�j=2 Lj�j

n .x/; (A.1.26)

with L�n.x/ the generalized Laguerre polynomial, defined by

L�n.x/ D exx��

nŠ

dn

dxn
.e�xxnC�/ D

nX
kD0

.nC �/Š .�x/k
.n � k/Š.k C �/ŠkŠ

: (A.1.27)

Sokolov and Ternov Function

The function defined by Sokolov and Ternov [6, 7] is related to (A.1.25) by

In;n0.x/ D J n
0

n�n0.x/: (A.1.28)

Recursion Relations

The J -functions satisfy recursion relations

x1=2J n�1
�C1 .x/ D .nC �/1=2J n�1

� .x/ � n1=2J n� .x/; (A.1.29)

x1=2J n��1.x/ D �n1=2J n�1
� .x/C .nC �/1=2J n� .x/; (A.1.30)

and also

�J n�1
� .x/ D x1=2

�
.nC �/1=2J n�1

�C1 .x/C n1=2J n��1.x/
�
; (A.1.31)

�J n� .x/ D x1=2
�
n1=2J n�1

�C1 .x/C .nC �/1=2J n��1.x/
�
: (A.1.32)

A further pair of relations that is similar to the recursion relations for Bessel
functions is

.x C �/J n� .x/ D Œx.nC �/�1=2J n��1.x/C Œx.nC � C 1/�1=2J n�C1.x/; (A.1.33)

2x
d

dx
J n� .x/ D Œx.nC �/�1=2J n��1.x/ � Œx.nC � C 1/�1=2J n�C1.x/: (A.1.34)

Relations Involving J -Functions

With � D n � n0 pn D .2neB/1=2, x D k2?=2eB , relations (A.1.33) and (A.1.34)
become
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pn0J nn0�n.x/ D pnJ
n�1
n0�n.x/C k?J nn0�n�1.x/;

pn0J n�1
n0�n.x/ D pnJ

n
n0�n.x/C k?J n�1

n0�nC1.x/: (A.1.35)

The following identities result from squares of the relations (A.1.35):

.p2n0 C p2n/Œ.J
n�1
n0�n/

2 C .J nn0�n/
2� � 4pn0pnJ

n�1
n0�nJ

n
n0�n

D k2?Œ.J n�1
n0�nC1/

2 C .J nn0�n�1/
2�; (A.1.36)

.p2n0 � p2n/Œ.J
n�1
n0�n/

2 � .J nn0�n/
2� D k2?Œ.J n�1

n0�nC1/
2 � .J nn0�n�1/

2�; (A.1.37)

.p2n0 C p2n/Œ.J
n�1
n0�n/

2 � .J nn0�n/
2� D 2pnk?ŒJ n�1

n0�nJ
n
n0�n�1 � J nn0�nJ

n�1
n0�nC1�

Ck2?Œ.J n�1
n0�nC1/2 � .J nn0�n�1/2�; (A.1.38)

.p2n0 � p2n/Œ.J
n�1
n0�n/

2 C .J nn0�n/
2� D 2pnk?ŒJ n�1

n0�nJ
n
n0�n�1 C J nn0�nJ

n�1
n0�nC1�

Ck2?Œ.J n�1
n0�nC1/2 C .J nn0�n�1/2�: (A.1.39)

In evaluating the response tensor in the summed form (9.1.20) some tensorial
components are multiplied by .pk/nn0 D 1

2
Œ.k2/kCp2n�p2

n0�, and (A.1.37), (A.1.39)
allow one to rewrite some of the terms that are multiplied by p2

n0 � p2n. Other terms
that are multiplied by p2

n0 � p2n can be rewritten using

.p2n0 � p2n/J n�1
n0�n D k?ŒpnJ nn0�n�1 C pn0J n�1

n0�nC1�; (A.1.40)

.p2n0 � p2n/J nn0�n D k?ŒpnJ n�1
n0�nC1 C pn0J nn0�n�1�: (A.1.41)

The remaining terms that are multiplied by p2n0 �p2n involve the square and products
of J n�1

n0�nC1, J nn0�n�1, and these can be rewritten by first expressing these in terms of
J n�1
n0�n, J nn0�n using (A.1.36)–(A.1.39), but no major simplifications occur.

Sum Rules

The sum rules

1X
n0D0

J n
0

n�n0.x/J
n0

n00�n0.x/ D ınn
00

; (A.1.42)

1X
n0D0

.n0 � n/ŒJ n
0

n�n0.x/�
2 D x; (A.1.43)

were derived by Quinn and Rodriguez [4] and Sokolov and Ternov [6].
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Orthogonality Relation

Z 1

0

dx J n� .x/J
n0

� .x/ D ınn
0

: (A.1.44)

Integral Identities

Z 1

0

dxx1=2 ŒJ n� .x/�
2 D .nC � C 1/1=2

 
1C nC 1

2

4.nC � C 1/

!
; (A.1.45)

Z 1

0

dx x ŒJ n� .x/�
2 D 2nC � C 3

2
; (A.1.46)

Particular Values

For � � 0, one has

J 0� .x/ D .�/�J �C1�� .x/ D x�=2e�x=2

.�Š/1=2
; (A.1.47)

J 1� .x/ D .�/�J �C1�� .x/ D x�=2e�x=2

..� C 1/Š/1=2
.� C 1� x/; (A.1.48)

J 2� .x/ D .�/�J �C2�� .x/ D x�=2e�x=2

.2Š.� C 2/Š/1=2

�Œ.� C 1/.� C 2/� 2.� C 2/x C x2�; (A.1.49)

J 3� .x/ D .�/�J �C3�� .x/ D x�=2e�x=2

.3Š.� C 3/Š/1=2
Œ.� C 1/.� C 2/.� C 3/

�3.� C 2/.� C 3/x C 3.� C 3/x2 � x3�: (A.1.50)

Expansion in x

For x � 1, the J -functions may be approximated by the leading term in their
expansion in powers of x:

J nn0�n.x/ D
�
n0Š
nŠ


1=2
x.n

0�n/=2

.n0 � n/Š

�
1 � n0 C nC 1

2.n0 � nC 1/
x C � � �

�
; (A.1.51)
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which applies for n0 � n. The limit x ! 0 gives

J n0 .0/ D 1; J n� .0/ D 0 for � ¤ 0: (A.1.52)

Approximation by Bessel Functions

The expansion of the J -functions in terms of Bessel functions,

J n�

�
z2

4n



D
�
.nC �/Š

nŠn�

�1=2 1X
aD0

ba

� z

2n

	a
J�Ca.z/;

b0 D 1; b1 D � 1
2
.� C 1/; b2 D 1

8
.� C 1/.� C 2/;

.a C 1/baC1 D � 1
2
.� C 1/ba C 1

4
.� C a/ba�1 � 1

4
nba�2; (A.1.53)

converges rapidly for sufficiently large n.
In taking the nonquantum limit, one takes the limit „ ! 0, with n ! 1 so that

pn D .2neB„/1=2 ! p? remains finite; the ratio a=n D .n � n0/=n is regarded as
of order „. To first order in „ one has

J nn�n0.x/ D Ja.z/ � 1
2
.a C 1/

„k?
p?

JaC1.z/: (A.1.54)

The J -functions with upper index n � 1 and n differ at first order in „:

J n�1
n0�n.x/ � J nn�n0.x/ D �„k?

p?
J 0
a.z/: (A.1.55)

Related identities (with arguments x and z omitted) are

.J n�1
n0�n/

2 C .J nn0�n/
2 D J 2a � 2a„k?

p?
J 0
aJa;

J n�1
n0�nJ

n
n0�n D J 2a � a„k?

p?
J 0
aJa;

.J n�1
n0�nC1/2 C .J nn0�n�1/2 D

X
�D˙1

J 2a��
�
1C �

a.a � �/eB

p2?



C 2a„k?

p?
J 0
aJa;

J n�1
n0�nC1J

n
n0�n�1 D JaC1Ja�1

�
1C aeB

p2?



� a„k?

p?
J 0
aJa;

.J n�1
n0�n/

2 � .J nn0�n/
2 D �2a„k?

p?
J 0
aJa;
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.J n�1
n0�nC1/

2 � .J nn0�n�1/
2 D

X
�D˙1

�J 2a��
�
1C �

a.a � �/eB

p2?



C a

n
J 2a :

(A.1.56)

A.2 Relativistic Plasma Dispersion Functions

A.2.1 Relativistic Thermal Function T.z; 
/

The function T .z; �/, defined by (2.4.29), has alternative integral representations:

T .z; �/ D ��
Z 1

0

d� sinh� e�� cosh� ln

�
z C tanh�

z � tanh�




D 2z
Z 1

0

d�
e�� cosh�

.1 � z2/ cosh2 � � 1

D � 2�

1 � z2

Z z

d�
K1.�R/

R
; (A.2.1)

with R D Œ.1 � �2/.1 � z2/�1=2.
The function T .z; �/ satisfies the partial differential equations [2]:

.1 � z2/
@2

@�2
T .z; �/ D 2zK0.�/C T .z; �/; (A.2.2)

z.1 � z2/3 T 00.z; �/� .1 � z2/2.1C 2z2/ T 0.z; �/ � �2z3T .z; �/
D 2z2�2K0.�/C 2.1� z2/�K1.�/; (A.2.3)

z
@

@�
T .z; �/ D 2K1.�/C .1 � z2/

�
T 0.z; �/; (A.2.4)

with T 0.z; �/ D @T .z; �/=@z, T 00.z; �/ D @2T .z; �/=@z2.

A.2.2 Trubnikov Functions

Trubnikov functions are defined by

tn� .z; �/ D .k Qu/nC1
Z 1

0

d� �n
K�

�
r.�/

�

r�.�/
; (A.2.5)

with r.�/ given by (2.4.10), and where the power of k Qu is included so that the
integral is dimensionless. They satisfy the recursion relations
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tnC1
�C1 .z; �/ D i�z2

1 � z2
tn�C1.z; �/C z2

1 � z2

8<
:
K�.�/

��
for n D 0;

ntn�1
� .z; �/ for n > 0;

(A.2.6)

@tn� .z; �/

@�
D �i� tn�C1.z; �/ � i tnC1

�C1 .z; �/: (A.2.7)

Two further identities are

tn�C1.z; �/ D �1 � z2

�

@tn� .z; �/

@�
C iz2

�

8<
:
K�.�/

��
for n D 0;

n tn�1
� .z; �/ for n > 0;

(A.2.8)

tnC2
�C1 .z; �/ D z3

@tn� .z; �/

@z
: (A.2.9)

The relation to T .z; �/ follows from

t00 .z; �/ D iz

2

@T .z; �/

@�
D i

2

�
2K1.�/C .1 � z2/

�
T 0.z; �/

�
; (A.2.10)

t01 .z; �/ D � iz

2�
T .z; �/: (A.2.11)

The functions for higher n are generated from these using (A.2.6).

A.2.3 Shkarofsky and Dnestrovskii Functions

The generalized Shkarofsky functions are defined by (2.5.28) for real q, integer
r � 0 and complex z, a with Im .z � a/ > 0 by

Fq;r .z; a/ D �i
Z 1

0

dt
.i t/r

.1 � i t/q exp

�
izt � at2

1 � i t
�

D �ie�a
Z 1

0

dt
.i t/r

.1 � i t/q
exp

h
i.z � a/t C a

1 � i t
i
: (A.2.12)

The definition is extended to Im .z � a/ < 0 by analytic continuation. Generalized
Dnestrovskii functions are defined by (2.5.34), viz. Fq;r .z/ D Fq;r .z; 0/. The usual
Shkarofsky functions, Fq.z; a/ D Fq;0.z; a/, and Dnestrovskii functions, Fq.z/ D
Fq;0.z/, are the special cases r D 0.

The Shkarofsky functions and the Dnestrovskii functions are related by an
expansion in modified Bessel functions:
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Fq.z; a/ D
1X

sD�1
e�2a Is.2a/ Fq�s.z/: (A.2.13)

Recursion Relations and Differential Equations

Recursion relations satisfied by the Shkarofsky functions are

aFq�2.z; a/ D 1C .a � z/Fq.z; a/ � qFqC1.z; a/; (A.2.14)

F 0
q.z; a/ D Fq.z; a/ � Fq�1.z; a/; (A.2.15)

F 00
q .z; a/ D Fq.z; a/ � 2Fq�1.z; a/C Fq�2.z; a/; (A.2.16)

where a prime denotes a derivative with respect to z. Eliminating Fq�1.z; a/ and
Fq�2.z; a/ between these gives a second order differential equation satisfied by the
Shkarofsky functions:

.a�z/F 00
q .z; a/� Œ2.a�z/�q�2�F 0

q.z; a/�.zCq�2/Fq.z; a/C1 D 0: (A.2.17)

Recursion relations for the Dnestrovskii functions follow from (A.2.14) and
(A.2.15) for a D 0:

.q � 1/Fq.z/ D 1 � zFq�1.z/; (A.2.18)

F 0
q.z/ D Fq.z/ � Fq�1.z/: (A.2.19)

Eliminating Fq�1.z/ between these gives a first order differential equation satisfied
by the Dnestrovskii functions:

zF 0
q.z/ D .z C q � 1/Fq.z/ � 1: (A.2.20)

The function Fq.z/ also satisfies (A.2.17) with a D 0. Equation (A.2.19) integrates
to give

Fq.z/ D zq�1ez� .1 � q; z/; � .q; z/ D
Z 1

z
d� �q�1e�� ; (A.2.21)

where � .q; z/ is the incomplete gamma function.

Limiting Cases

The expansion of the Dnestrovskii functions for small arguments z follows from
(A.2.21) and the relevant expansion of the incomplete gamma function:
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Fq.z/ D zq�1ez� .1� q/�
1X
j

zj � .1 � q/

� .j C q � 1/j Š

D zq�1ez� .1� q/� ez
1X
j

.�z/j � .1 � q/

� .j C 2 � q/
: (A.2.22)

For real, positive z there is an expansion in generalized Laguerre polynomials:

Fq.z/ D
1X
jD0

L
.1�q/
j .z/

j C 1
: (A.2.23)

For large argument, jzj 	 1, the limit

Fq.z/ �
1X
jD0

.�1/j z�1�j � .q C j / (A.2.24)

applies for arg .z/ < 3
=2.

Half-Integer q

In evaluating (2.5.27) in terms of Shkarofsky functions, the function and its
derivative with q D 5=2 appear. The expansion (2.5.38) then leads to Dnestrovskii
functions with half-integer q. For q a positive half-integer, the Dnestrovskii
functions are expressible in terms of the plasma dispersion function

Z.y/ D 
�1=2
Z 1

�1
dt

e�t 2

t � y D �	.y/
y

C i
1=2 e�z2 ; (A.2.25)

The relevant form is

� .q/Fq.z/ D
q�3=2X
jD0

.�z/j � .q�1�j /C
1=2.�z/q�3=2 Œiz1=2ezZ.iz1=2/�: (A.2.26)

Expansions for small and large arguments are

� .q/Fq.z/ D

8̂
ˆ̂̂<
ˆ̂̂̂
:

1X
jD0

.�z/j � .q � 1 � j / � i
.�z/q�1ez for jzj2 � 1;

�
1X
jD0

� .q C j /.�z/�1�j � i�
.�z/q�1ez for jzj 	 1;

(A.2.27)
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with � D 0 for arg z < 
 , � D 1 for arg z D 
 and � D 2 for 
 < arg z < 2
 .

A.3 Dirac Algebra

In this section some results associated with the properties of Dirac matrices are
summarized.

A.3.1 Definitions and the Standard Representation

The Dirac matrices are defined to satisfy

���� C ���� D 2g��; (A.3.1)

where the unit Dirac matrix is implicit on the right hand side. The Dirac Hamito-
nian is

OH D α � Op C ˇm; α D �0γ; ˇ D �0: (A.3.2)

The requirement that the Dirac Hamiltonian be self-adjoint implies

.��/† D �0���0: (A.3.3)

Standard Representation

The specific choice for the Dirac matrices used here is referred to as the standard
representation. It corresponds to

�0 D

0
BB@

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

1
CCA ; �1 D

0
BB@

0 0 0 1

0 0 1 0

0 �1 0 0

�1 0 0 0

1
CCA ;

�2 D

0
BB@

0 0 0 �i
0 0 i 0

0 i 0 0

�i 0 0 0

1
CCA ; �3 D

0
BB@

0 0 1 0

0 0 0 �1
�1 0 0 0

0 1 0 0

1
CCA : (A.3.4)

A convenient way of writing these and other 4 � 4 matrices is in terms of block
matrices. Let 0 and 1 be the null and unit 2 � 2 matrices. One writes

˙ D
�
σ 0
0 σ



; �x D

�
0 1
1 0



;
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�y D
�

0 �i1
i1 0



; �z D

�
1 0
0 �1



; (A.3.5)

where the 2 � 2 matrices

�x D
�
0 1

1 0



; �y D

�
0 �i
i 0



; �z D

�
1 0

0 �1


; (A.3.6)

are the usual Pauli matrices. In this representation one has

�� D Œ�z; i�y˙ �; α D �xσ; ˇ D �z: (A.3.7)

Dirac Matrices � �� and �5

Two additional Dirac matrices that play an important role in the theory are

��� D 1
2
Œ��; ���; (A.3.8)

which plays the role of a spin angular momentum, and

�5 D �i�0�1�2�3; (A.3.9)

which satisfies the relations

���5 C �5�� D 0; .�5/2 D 1; .�5/† D �5: (A.3.10)

One also has
���������5 D �i����� : (A.3.11)

In the standard representation one has �5 D ��x . The spin 4-tensor ��� , defined by
(A.3.8), has components

��� D

0
BB@

0 ˛x ˛y ˛z

�˛x 0 �i�z i�y

�˛y i�z 0 �i�x
�˛z �i�y i�x 0

1
CCA : (A.3.12)

A.3.2 Basic Set of Dirac Matrices

There are 16 independent 4 � 4 matrices and for the Dirac matrices it is sometimes
convenient to choose a set of 16 basis vectors. A specific choice of 16 independent
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matrices is the set
�A D

h
1; ��; i���; i���5; �5

i
: (A.3.13)

This choice involves a scalar and a pseudo scalar (1, �5), a 4-vector and a pseudo
4-vector (��, i���5) and an antisymmetric second rank 4-tensor (���). These have
1, 1, 4, 4, and 6 components, respectively. This set is chosen such that the analogous
set, �A with indices down, �A D Œ1; ��; i���; i���

5; �5� satisfy

�A�A D 1 (no sum); �A�B D ıAB: (A.3.14)

The expansion of an arbitrary Dirac matrix,O say, in this basis gives

O D
X
A

cA�
A; cA D 1

4
Tr Œ�AO�: (A.3.15)

Traces of Products of �-Matrices

The traces of products of � -matrices are important in detailed calculations in QED.
Consider

T ˛1˛2:::˛n D Tr
�
�˛1�˛2 : : : �˛n

	
: (A.3.16)

The trace of �� is zero, as are the traces of ��� , ���5 and �5. The trace of a product
of an odd number of � -matrices is also zero: T ˛1˛2:::˛n D 0 for n odd. The trace of
a product of two � -matrices is nonzero. This trace is evaluated as follows. First the
invariance of the trace of a product of matrices under cyclic permutations of the
matrices implies T �� D T ��. The trace of (5.1.1) implies T �� D 4g�� , where the
factor of 4 arising from the trace of the unit 4 � 4 matrix. Using the invariance of
the trace under cyclic permutations and (5.1.1) allows one to evaluate the traces
(A.3.16) for all even n. One finds

T �� D 4g��; T ���� D 4
h
g��g�� � g��g�� C g��g��

i
; (A.3.17)

T ����˛ˇ D 4
�
g��T ��˛ˇ � g��T ��˛ˇ C g��T ��˛ˇ � g�˛T ���˛ C g�ˇT ���˛

�
;

(A.3.18)
and so on.
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differential equation, 465
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sum rules, 466
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recursion relations, 45
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372, 373
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Cauchy principal value, 44, 71, 244
causal condition, 408, 413, 460
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charge-conjugation, 341, 386
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409
chemical potential, 418–420
closed loop diagrams, 457
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collisional damping, 17
completely degenerate limit, 419, 421, 423,

428, 437–439, 441, 443
dissipation, 423
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Compton scattering
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birefringent vacuum, 324
cross section, 313

differential, 313
crossed processes, 312
cyclotron limit, 324
ground state n D 0, 317

probability, 318
inverse, 325
kinetic equations, 309, 312
Klein-Nishina limit, 327
nonlinear scattering, 311
probability, 309, 310

relativistic limit, 325
resonance condition, 311

allowed regions, 312
resonant, 321, 325, 326
Ritus method, 314
sum, intermediate states, 313

Compton wavelength, 420
convolution integral, 9
covariant fluid equations, 11
critical field

electric Ec , 372
magnetic Bc , 207, 372

cross section
Compton, 313
differential, 196
Thomson, 325

cutoff frequency, 115, 124, 129, 136, 146, 147,
150, 441, 444

magnetoionic theory, 124
cyclotron emission, 161

double, 330
frequency downshift, 179
maser, 181
relativistic line broadening, 180

D
de Broglie wavelength, 420
Debye length, 439
density of final states, 242, 246–248, 274,

279
detailed balance, 247
diamagnetism, 439
dielectric tensor Ki

j .k/, 16
1D pair plasma, 86
cold electron gas, 18
cold plasma, 13, 16, 72
counterstreaming, 22
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longitudinal part, 17
longitudinal thermal, 73
magnetoionic theory, 18
MHD-like limit, 73, 120
relation to ˘i

j .k/, 59
Shkarofsky approximation, 134
spin-dependent response, 38
streaming, 21

Dirac equation, 201
B D 0, 202
B ¤ 0, 202, 203, 205, 208, 214, 240
adjoint, 202
factorization, 231
inhomogeneous, 220
reduced, 231, 233
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Dirac matrices
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Dirac matrix
��� , 478
�5 , 478
��, 202
basis set, 479
definition, 477
projection operator P

˙
, 222, 232, 238, 239

standard representation, 202, 233, 477
vertex matrix, 236

dispersion equation, 17
cold plasma, 112, 379
invariant form, 106

cold unmagnetized plasma, 107
magnetoionic, 123
MHD waves, 31
parallel propagation, 440

dispersion relation
invariant form, 131
weak-anisotropy approximation, 152

dispersion-integral method, 351, 406
dissipation-free region, 256, 415–417, 422, 423
distribution function
ı-function, 436
1D Jüttner, 87, 420, 424
1D Maxwellian, 428
bell, 89
bi-Maxwellian, 272
completely degenerate, 419
Fermi-Dirac, 418

nonrelativistic, 427, 428
Jüttner, 60, 189
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loss-cone, 181
nondegenerate, 419
one-dimensional (1D), 434
power-law, 97, 184
shell, 181
water-bag, 89

Dnestrovskii function, 69, 76, 77, 79, 474
generalized, 78
differential equation, 475
recursion relations, 475

Doppler condition, 47
Doppler effect

anomalous, 163, 257
broadening, 177
normal, 163, 257
transverse, 179

double cyclotron emission, 330
double emission, 312, 328

kinetic equation, 329

E
eigenfunction

helicity, 210, 211, 223
eikonal, 30
electromagnetic field

electrostatic, 3
magnetostatic, 3
wrench, 3, 363

electron cyclotron maser emission, 181
electron propagator

Géhéniau form, 341, 350, 364, 383, 457
emissivity, 176

magnetoionic mode, 176
synchrotron, 183
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"n.pz/, 206

energy-momentum tensor
electromagnetic, 25

enthalpy, 25
Euler-Maclaurin summation formula, 353, 360
evanescent, 113

F
Faraday rotation

generalized, 153
Fermi energy, 418, 419
Fermi momentum, 419
Feynman diagram

box, 370, 383
bubble, 395
Compton scattering, 309, 310
electron-electron scattering, 335
hexagon, 370, 383
Mott scattering, 334
rules for

m-photon vertex, 241
B D 0, 239
B ¤ 0, 243
coordinate space, 240
Ritus method, 245
transition probability, 243
vertex formalism, 244

triangle, 457, 461
fluid equations, 11

continuity, 24, 27
covariant, 11
energy-momentum tensor, 24, 27, 29
fluid displacement, 30
fluid motion, 24
Fourier transform, 12
motion, 29
pair plasma, 28
rest frame, 13
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forward-scattering method, 41, 42, 51, 101
Fourier series, 162
Fourier transform, 9
Fourier-Bessel components, 46
frequency mismatch, 322

G
gauge condition, 107
G-gauge, 109, 245
Coulomb, 203, 205, 245, 334
cylindrical, 204, 209, 210, 214–216, 218,

224, 225, 232, 233
gauge transformation, 132
Landau, 202, 204, 209, 210, 212, 214–217,

220, 224–226, 230, 232, 233, 242
Lorenz, 245, 354
radiation gauge, 152
temporal, 245
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gauge-dependent factor, 225, 241, 359
gauge-invariance condition, 63, 106, 347, 409
generalized Faraday rotation, 155, 157, 158,

187
generalized Ohm’s law, 24, 27, 29
Green function, 220

electron propagator, 220
group velocity, 112
gyrocenter
x position, 216
average over, 215

gyromagnetic
absorption, 261
emission, 261

nonquantum limit, 253
positron, 252
probability, 251

processes, 251
unpolarized particles, 253

gyromagnetic emission, 161
absorption coefficient, 177
differential change, 167
in vacuo, 169

angular distribution, 172
axial ratio, 169
power emitted, 170
quasilinear coefficients, 172
radiation reaction, 173

Lorentz transformation, 170
probability of, 163
quasilinear equations, 168
supercritical field, 283
synchrotron emission, 182
thermal, 177

transfer equation, 167, 176
volume emissivity, 176

gyromagnetic ratio, 35, 207, 208, 450
gyrophase, 42, 52, 58
gyroradius, 43, 45, 56
gyroresonance condition, 46, 47, 163, 275

differential change, 167
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semirelativistic approximation, 179

gyrotropy, 20, 22
current induced, 22, 23
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Heisenberg-Euler Lagrangian, 339, 340, 355,

360, 362, 365, 366, 369, 371–373,
375, 376, 378, 382, 388

generalization, 363
hermite polynomial
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Hilbert transform, 408
hybrid frequency, 116

lower, 118
upper, 116

hypergeometric function, 76, 80
hyrdogen atom
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I
incomplete gamma function � .q; z/, 475
instability

beam-driven maser, 148
counter-streaming, 150
reactive

beam driven, 149
internal energy density, 24
inverse Compton scattering, 325
ion sound speed vs , 120

J
Jüttner distribution, 60, 64, 65, 81

1D, 87
highly relativistic, 98

Jones calculus, 153
Jupiter’s decametric radio emission, 182

K
Kapteyn series, 171
kinetic equations

double emission, 329
gyromagnetic transitions, 258
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one-photon pair creation, 260
quasilinear equations

gyromagnetic emission, 161, 169
Thomson scattering, 194

two-photon pair creation, 330
Kirchhoff’s law, 177, 188
Klein-Gordon equation, 221, 404
Klein-Nishina cross-section, 281
Kramers-Kronig relations, 378, 406, 408
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Laguerre polynomial Ln.x/, 217
generating function, 219
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diamagnetism, 439
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prescription, 371, 416, 460

Landau damping, 74
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Landau quantum number, 164, 206
Landau state, 84, 317, 321, 330, 372, 417, 419,

420, 434, 436, 447, 450, 456, 462
large-n

limit, 402, 403, 405
Larmor formula

generalized, 174
Lorentz force, 56
Lorentz transformation, 18

magnetoionic waves, 130
polarization vector, 132
response tensor, 19
transformation matrices, 19

Lorentzian line profile, 323
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Møller scattering, 242
Macdonald function K�.z/, 60, 62, 69, 89, 96,

291
asymptotic limit, 74
differential equation, 466
half-integer order, 68
integral identities, 279
integral representation, 420, 467
recursion relations, 467

Madelung equations, 32
magnetic properties

ferromagnetism, 404
paramagnetism, 404

magneto-electric response, 368

magnetoionic parameters, 18
magnetoionic theory, 11
matrix of cofactors, 106, 107, 109, 113, 114,

121
Maxwell equations, 2
Maxwell tensor, 2

dual, 2
electromagnetic wrench, 364

MHD speed, 32
minimal coupling, 203, 210, 212
mode coupling, 142, 158
Mott scattering

probability, 334
Mueller calculus, 153
Mueller matrix, 159

N
neutrino plasma, v
Newberger sum rule, 81
nonlinear response tensor, 456

cubic, 9, 369, 370, 462
quadratic, 9, 100, 311, 369, 382–385, 388,

390, 461
arbitrary distribution, 102
cold plasma, 100
vacuum, 457

vertex formalism, 459
nonlinear scattering, 192
normalization time, 162
number density

proper, 19, 24, 26, 29, 37, 411, 412, 419,
420, 423

O
one-photon pair creation

dispersion, 393, 404, 407
Onsager relations, 10, 110, 399
operator

spin projection, 222, 237
orbit of a spiraling charge, 42
orthogonality relation, 209, 232

P
pair creation

dispersion, 404
spontaneous, 370, 371
two photon, 328, 332

probability, 332
two-photon, 312

pair plasma
pure, 103, 123, 128, 381, 418
two-fluid equations, 28
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exclusion principle, 247, 372, 407
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photon splitting, 339, 382–385, 387, 457
S-matrix method, 388
CP invariance, 386
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Heisenberg, 394
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Schrödinger, 356, 394

plasma dispersion function, 75
Z.y/, 69, 70, 199, 476
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Lorentz transformation, 132
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gyromagnetic transition, 251–253
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Green function, 220
reduced, 234, 235, 244
statistical average, 217
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photon splitting, 382
resonant Compton scattering, 325
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X-ray, 336, 379, 381
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quantum fluid theory, 32
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Wigner-Moyal equations, 32, 33

quantum number
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quantum recoil, 34, 164, 393, 403–405, 432,

455
nonrelativistic, 165
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quantum synchrotron parameter, 273
quasilinear equations
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gyromagnetic emission, 168
Thomson scattering, 194
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radiation reaction, 172

force, 175
gyromagnetic emission, 172

ratio of electric to total energy, 110
Razin effect, 190
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relativistic plasma dispersion function
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J.t0; �?/, 66
K�
n.�pk˙

/, 410
T .v; �/, 66, 425
W.z/; R.z/; S.z/, 157
Z�
n.t0/, 412, 413

completely degenerate limit, 421
nondegenerate, 426
nondegenerate limit, 424

Zn.t0/
nonrelativistic FD distribution, 428

Z.1/

nn0.!; kz/–Z.4/

nn0.!; kz/, 415
ImZ�

n.t0/, 416
1D Jüttner, 87
1D distribution, 85
hypergeometric function, 80
logarithmic singularity, 437–439, 441, 443,

444, 446–449
resonance

condition, 224
threshold, 258, 261–263, 272, 286, 288,

289, 295, 296, 298
resonance ellipse, 165, 257

final, 258
initial, 258

resonant energies, 47
resonant momenta, 47
resonant scattering

absorption plus emission, 322
Compton, 321

PC-induced, 326
effective probability, 323
Thomson, 198

response 3-tensor
antihermitian part, 71, 74
Maxwellian distribution, 71
parallel propagation, 432
Shkarofsky tensor, 75

response tensor ˘��.k/

1D electron gas, 434
1D pair plasma, 85, 157
antihermitian part, 10, 53, 58, 59, 63, 111,

406–408, 416, 441, 449
cold plasma, 13, 14
cold unmagnetized plasma, 107
definition, 9
forward-scattering form, 51, 404
forward-scattering method, 64
gauge-invariance, 10
general forms, 51
general properties, 9
gyrotropic part, 399
hermitian part, 10, 408
high frequencies, 97
Lorentz transformation, 19

magnetized vacuum, 340
nondispersive part, 408–412
nongyrotropic part, 399
nonquantum limit, 404
Onsager relations, 10, 399
parallel propagation, 430
reality condition, 9
Ritus method, 401
RPDF form, 414, 415

1D electron gas, 435
parallel propagation, 432

strictly-perpendicular distribution, 67, 68
summed form, 397, 400

1D electron gas, 435
parallel propagation, 431

summed over gyroharmonics, 53, 59
synchrotron-emitting gas, 90
transverse components, 94
Trubnikov form, 60, 64, 67, 68

1D, 88
mildly relativistic, 74
ultrarelativistic, 99

ultrarelativistic, 95
thermal, 98

vertex form, 394
parallel propagation, 430

Vlasov form, 405
Vlasov method, 55, 57

Ritus method, 230, 234, 238, 239, 317, 401
vertex matrix, 236

S
scattering

electron-electron, 335
Møller, 334, 335
Mott, 333

Schrödinger equation, 33
screw sense, 42
semi-classical theory, 164, 167
Shkarofsky function, 69, 76, 79, 137, 138, 474

generalized, 76, 474
recursion relations, 475

simultaneous eigenfunctions, 211
single particle current

higher order, 101
slash notation, 202
small-x approximation, 430, 433–435, 454,

455
small-gyroradius approximation, 50, 51, 74,

434
sound speed

adiabatic, 31, 120
ion sound, 120
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spin
BMT equation, 35
equation of motion, 35
magnetic moment, 36
quasi-classical approach, 35
scalar particle, 404

spin operator
��� , 478
helicity, 210, 212, 215, 224, 233, 271
magnetic-moment, 210, 212, 252, 254, 271,

316, 396, 450, 456
eigenfunctions, 215, 224, 233
eigenstates, 212, 213, 227

spin-dependence
occupation number, 397, 450

spin-dependent response
˘
��
m .k/, 38

˘
��
m .k/, 450

RPDF form, 452
small-x approximation, 454
summed form, 451

cold plasma, 36
dielectric tensor, 38

spin-polarized electron gas, 450
square of ı-function, 162
static response, 439

electric, 439
magnetic, 439

stationary phase, method of, 90, 91
steepest descent

method of, 180
Stokes

vector, 153
Stokes parameters, 153

Poincaré sphere, 154
wave mode, 154

streaming, 18
counterstreaming, 18, 21, 22
multi-fluid, 18, 20

sum over spin states, 228
sum rule, 378
susceptibility

cold electron gas, 379
combined, 379
electric, 354, 367, 368, 439
equivalent, 355
fourth rank 4-tensor, 367, 373
magnetic, 354, 367, 368, 439
magneto-electric, 355, 367, 368

symmetry
crossing, 245, 285, 309, 329

synchrotron absorption, 185
absorption coefficient, 185
power-law distribution, 186

thermal, 188, 189
Trubnikov’s method, 189

synchrotron approximation, 90, 91
synchrotron emission, 161, 182

emissivity, 183
maser, 191
power emitted, 279, 280
quantum broadening, 284
Razin effect, 183, 190
spin dependence, 282
transition rate, 274, 279, 280

T
thermal distribution

Jüttner distribution, 60
Maxwellian, 69
weakly relativistic, 69

Thomas-Fermi length, 439
Thomson scattering, 161, 191

cross section, 195
high frequency, 197
magnetoionic waves, 196
probability, 193
probablity, 192
quasilinear equations, 194
resonant, 198
unmagnetized particles, 194

Toll
method of, 408

transfer equation
gyromagnetic emission, 167
magnetoionic mode, 176
Stokes parameters, 153, 186

transition
spin flip, 264, 267, 268, 270, 271, 282, 435
spin flip, reverse, 267, 270

tunneling
quantum mechanical, 305

U
uniaxial crystal, 128

V
vacuum polarization tensor, 339, 340, 395, 441

antihermitian part, 350
electromagnetic wrench, 363
long wavelength, 352
regularization, 340, 342, 345, 348, 351, 361
strong-B , 346, 353
susceptibility, 373
unregularized
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Géhéniau form, 342
vertex formalism, 347

unregularized, 347
weak-field limit, 346

vacuum resonance, 379–381
vertex formalism, 230, 317
vertex function

arbitrary spin states, 226
definition, 223
gauge-dependent factor, 223
gauge-independent part, 223
gauge-invariance condition, 227
magnetic-moment states, 227
momentum-space representation, 223
symmetry properties, 224

Vlasov equation
covariant, 56
linearized, 56

Vlasov method, 41, 42, 51, 55
volume emissivity

magnetoionic mode, 176
thermal, 177, 188

W
water-bag distribution, 89
wave equation, 106

2-dimensional, 152
3-tensor form, 108
homogeneous, 106, 108
matrix form, 106

wave mode, 105, 108
B	>Bc , 375
absorption coefficient, 105, 111
Alfvén, 31, 105, 118, 121
Bernstein, 105
birefringent vacuum, 199, 325
cold plasma

polarization vector, 113
cold-plasma, 105
cutoff, 115

effect of positrons, 128
cyclotron-harmonic, 134

Dnestrovskii-Kostomarov, 133, 136,
139

extraordinary, 136
Gross-Bernstein, 133, 136, 139
ordinary, 134
weakly relativistic, 137

dispersion relation, 105
doublet, 441–444, 446–449
electromagnetic wrench, 375
electron-cyclotron, 105
evanescent, 113

fast magnetoacoustic, 31
GA mode, 440

longitudinal, 442
transverse, 447

group velocity, 112
gyromagnetic absorption, 438
helicon, 124
hybrid, 116
inertial Alfvén, 119
ion acoustic, 120
ion sound, 120
kinetic Alfvén, 120
Langmuir, 105
Langmuir-type, 441
longitudinal, 105, 441

GA mode, 442
Lorentz transformation, 142
lower hybrid, 117
lower-hybrid, 105, 117
magnetized vacuum, 340

k-mode, 354
?-mode, 354

magnetoacoustic, 118
magnetoionic, 105, 122

admixture of positrons, 128
cutoff frequency, 124
high frequency, 127
Lorentz transformation, 130
o mode, 124
QL, QT limits, 125
whistler mode, 124
x mode, 124
z mode, 124

MHD, 29, 105, 119
MHD-like, 120

absorption coefficient, 122
fast, 121
slow, 121

pair mode, 438
perpendicular propagation, 133
polarization vector, 105, 109
pulsar plasma, 140

Alfvén, 144
counter-streaming, 146
cyclotron resonance, 141, 142
high frequency, 156
instabilities, 148, 150, 151
longitudinal, 144
low-frequency, 140
mode coupling, 158
non-gyrotropic, 143
O mode, 140
oblique, 145
oblique Alfvén, 146
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wave mode
spread in Lorentz factors,

143
X mode, 140, 143

ratio of electric to total energy, 105,
110

resonance, 116
resonant, 117
slow magnetoacoustic, 31
Stokes eigenvector, 154
transverse, 444

GA edge mode, 445
GA mode, 444, 447
PC mode, 444, 448

vacuum, 372
n.!/ < 1, 378
labeling ?,k, 373

whistler, 119

wavefunction
factorization, 236
gauge-dependent part, 232
Johnson-Lippmann, 208, 211–215, 223,

224, 233, 336
reduced, 233–236
simple harmonic oscillator, 205, 206, 221

weak-anisotropy approximation, 151, 374
axial ratio, 152
dispersion relation, 152
mode coupling, 158
rest frame, 153
wave equation, 152

weak-turbulence expansion, 9, 48, 365
Wigner

function, 33, 394
matrix, 33, 394
Wigner-Moyal equations, 33
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